Skip to main content

Measuring Driver Discomfort in Autonomous Vehicles

  • Conference paper
  • First Online:
Intelligent Human Systems Integration 2020 (IHSI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1131))

Included in the following conference series:

Abstract

Autonomous driving is getting more common and easily accessible with rapid improvements in technology. Prospective buyers of autonomous vehicles need to adapt to this technology equally rapidly to feel comfortable in them. However, this is not always the case, since taking away control from the user often correlates with loss of comfort. Detecting uncomfortable and stressful situations while driving could improve driving quality and overall acceptance of autonomous vehicles through adaption of driving style, interface and other methods. In this paper, we test a range of methods, which measure the discomfort of a user of an autonomous vehicle in real-time. We propose a portable set of sensors that measure heart rate, skin conductance, sitting position, g-forces and subjective discomfort. Preliminary results will be examined and next steps will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    GSR Sensor from Seeedstudio, http://wiki.seeedstudio.com/Grove-GSR_Sensor.

  2. 2.

    HR Sensor from Seeedstudio, http://wiki.seeedstudio.com/Grove-Ear-clip_Heart_Rate_Sensor/.

  3. 3.

    Seeedstudio Grove system, http://wiki.seeedstudio.com/Grove_System.

  4. 4.

    Developed by OFFIS Health.

References

  1. Storm, H., Myre, K., Rostrup, M., Stokland, O., Lien, M.D., Raeder, J.C.: Skin conductance correlates with perioperative stress. Acta Anaesthesiol. Scand. 46(7), 887–895 (2002)

    Article  Google Scholar 

  2. Villarejo, M.V., Zapirain, B.G., Zorrilla, A.M.: A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee. Sensors 12(5), 6075–6101 (2012)

    Article  Google Scholar 

  3. Minguillon, J., Perez, E., Lopez-Gordo, M., Pelayo, F., Sanchez-Carrion, M.: Portable system for real-time detection of stress level. Sensors 18(8), 2504 (2018)

    Article  Google Scholar 

  4. Yamakoshi, T., Yamakoshi, K.I., Tanaka, S., Nogawa, M., Shibata, M., Sawada, Y., Rolfe, P., Hirose, Y.: A preliminary study on driver’s stress index using a new method based on differential skin temperature measurement. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 722–725, August 2007

    Google Scholar 

  5. Healey, J., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6(2), 156–166 (2005)

    Article  Google Scholar 

  6. Gao, H., Yüce, A., Thiran, J.P.: Detecting emotional stress from facial expressions for driving safety. In: IEEE International Conference on Image Processing (ICIP), pp. 5961–5965, October 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Niermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niermann, D., Lüdtke, A. (2020). Measuring Driver Discomfort in Autonomous Vehicles. In: Ahram, T., Karwowski, W., Vergnano, A., Leali, F., Taiar, R. (eds) Intelligent Human Systems Integration 2020. IHSI 2020. Advances in Intelligent Systems and Computing, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-39512-4_9

Download citation

Publish with us

Policies and ethics