Skip to main content

Design of a DSL for Converting Rust Programming Language into RTL

  • Conference paper
  • First Online:
Advances in Internet, Data and Web Technologies (EIDWT 2020)

Abstract

Recent research has focused on a large amount of processing such as streaming processing, big data, deep learning and so on. Since the processing time of these processes increases in proportion to the amount of calculation, an arithmetic unit that can increase the speed is required. In this situation, Field Programmable Gate Array (FPGA) has been attracting attention because it can speed up processing and reduce power consumption. However, Hardware Description Language (HDL) such as Verilog used when developing FPGA increases the development time, but also makes it difficult to guarantee memory safety. In this paper, we propose a Register Transfer Level (RTL) designing Domain Specific Language (DSL) for Rust programming language convert to RTL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, T., et al.: A survey of FPGA based deep learning accelerators: challenges and opportunities. arXiv:1901.04988, pp. 1–10 (2018)

  2. Vipin, K., et al.: FPGA dynamic and partial reconfiguration: a survey of architectures, methods, and applications. ACM Comput. Surv. 51(4), 1–39 (2018)

    Article  Google Scholar 

  3. Asano, S.: Performance comparison of FPGA, GPU and CPU in image processing. In: Proceedings of FPL-2007, pp. 126–131 (2009)

    Google Scholar 

  4. Gomez-Pulido, J., et al.: Accelerating floating-point fitness functions in evolutionary algorithms: a FPGA-CPU-GPU performance comparison. Genet. Program. Evolvable Mach. 12, 403–427 (2011)

    Article  Google Scholar 

  5. IEEE Std. 1364-2001: IEEE Standard for Verilog Hardware Description Language. IEEE SA, pp. 1–590 (2001)

    Google Scholar 

  6. ModelSim: Foreign Language Interface. User Manual, Version 5.6d, 13 November 2019

    Google Scholar 

  7. Windh, S., et al.: High-level language tools for reconfigurable computing. Proc. IEEE 103(3), 390–408 (2015)

    Article  Google Scholar 

  8. Kapre, N., Bayliss, S.: Survey of domain-specific languages for FPGA computing. In: Proceedings of FPL-2016, pp. 1–12 (2016)

    Google Scholar 

  9. Saravanakumaran, B., Joseph, M.: Survey on optimization techniques in high level synthesis. In: Proceedings of CCSIT-2017, pp. 11–21 (2017)

    Google Scholar 

  10. The Unified Modeling Language, 13 November 2019. https://www.uml-diagrams.org/

  11. Chuan, C., et al.: A survey of SQL language. J. Database Manag. (JDM) 4(4), 4–16 (2019)

    Article  Google Scholar 

  12. Seo, Y.: High-level hardware design of digital comparator with multiple inputs. Integration 68, 157–165 (2019)

    Article  Google Scholar 

  13. Veriloggen, 13 November 2019. https://github.com/PyHDI/veriloggen

  14. Bachrach, J., et al.: Chisel: constructing hardware in a scala embedded language. In: Proceedings of DAC-2012, pp. 1212–1221 (2012)

    Google Scholar 

  15. Bellows, P., Hutchings, B.: JHDL - an HDL for reconfigurable systems. In: Proceedings of IEEE FCCM-1998, pp. 175–184 (1998)

    Google Scholar 

  16. Parthenon home page, 13 November 2019. http://www.parthenon-society.com/archive/NTT/

  17. Jocelyn, S., François, B., Sameer, A.: Implementing stream-processing applications on FPGAs: a DSL-based approach. In: Proceedings of FPL-2011, pp. 130–137 (2011)

    Google Scholar 

  18. Sano, K.: DSL-based design space exploration for temporal and spatial parallelism of custom stream computing. In: Proceedings of FSP-2015, pp. 29–34 (2015)

    Google Scholar 

  19. Kuon, I., et al.: FPGA architecture: survey and challenges. Found. Trends Econometrics 2(2), 135–253 (2007)

    Google Scholar 

  20. Chen, Z., Su, A., Sun, M.: Resource-efficient FPGA architecture and implementation of Hough transform. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(8), 1419–1428 (2012)

    Article  Google Scholar 

  21. Matsakis, N., Klock II, F.: The rust language. In: ACM SIGAda HILT-2014, vol. 34, no. 3, pp. 103–104 (2014)

    Google Scholar 

  22. The rust programming language, 13 November 2019. https://www.rust-lang.org/

  23. Verugent, 13 November 2019. https://github.com/RuSys/Verugent/

  24. Oda, T., et al.: Analysis of node placement in wireless mesh networks using Friedman test: a comparison study for Tabu Search and Hill Climbing. In: Proceedings of IMIS-2015, pp. 133–140 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Takano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Takano, K., Oda, T., Kohata, M. (2020). Design of a DSL for Converting Rust Programming Language into RTL. In: Barolli, L., Okada, Y., Amato, F. (eds) Advances in Internet, Data and Web Technologies. EIDWT 2020. Lecture Notes on Data Engineering and Communications Technologies, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-030-39746-3_36

Download citation

Publish with us

Policies and ethics