Skip to main content

Packing Trees into 1-Planar Graphs

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2020)

Abstract

We introduce and study the 1-planar packing problem: Given k graphs with n vertices \(G_1, \dots , G_k\), find a 1-planar graph that contains the given graphs as edge-disjoint spanning subgraphs. We mainly focus on the case when each \(G_i\) is a tree and \(k=3\). We prove that a triple consisting of three caterpillars or of two caterpillars and a path may not admit a 1-planar packing, while two paths and a special type of caterpillar always have one. We then study 1-planar packings with few crossings and prove that three paths (resp. cycles) admit a 1-planar packing with at most seven (resp. fourteen) crossings. We finally show that a quadruple consisting of three paths and a perfect matching with \(n \ge 12\) vertices admits a 1-planar packing, while such a packing does not exist if \(n \le 10\).

This work started at the Bertinoro Workshop on Graph Drawing 2019 and it is partially supported by: (i) MIUR grant 20174LF3T8, (ii) Dipartimento di Ingegneria - Università degli Studi di Perugia grants RICBASE2017WD and RICBA18WD, (iii) NFS grants CCF-1740858, CCF-1712119, DMS-1839274, DMS-1839307.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brandenburg, F.J.: Recognizing optimal 1-planar graphs in linear time. Algorithmica 80(1), 1–28 (2018)

    Article  MathSciNet  Google Scholar 

  2. Czap, J., Hudák, D.: 1-planarity of complete multipartite graphs. Discrete Appl. Math. 160(4), 505–512 (2012)

    Article  MathSciNet  Google Scholar 

  3. De Luca, F., et al.: Packing trees into 1-planar graphs. CoRR abs/1911.01761 (2019)

    Google Scholar 

  4. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019)

    Article  Google Scholar 

  5. Frati, F.: Planar packing of diameter-four trees. In: Proceedings of the 21st Annual Canadian Conference on Computational Geometry, pp. 95–98 (2009)

    Google Scholar 

  6. Frati, F., Geyer, M., Kaufmann, M.: Planar packing of trees and spider trees. Inf. Process. Lett. 109(6), 301–307 (2009)

    Article  MathSciNet  Google Scholar 

  7. García Olaverri, A., Hernando, M.C., Hurtado, F., Noy, M., Tejel, J.: Packing trees into planar graphs. J. Graph Theory 40(3), 172–181 (2002)

    Article  MathSciNet  Google Scholar 

  8. Geyer, M., Hoffmann, M., Kaufmann, M., Kusters, V., Tóth, C.D.: Planar packing of binary trees. In: Dehne, F., Solis-Oba, R., Sack, J.R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 353–364. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6_31

    Chapter  Google Scholar 

  9. Geyer, M., Hoffmann, M., Kaufmann, M., Kusters, V., Tóth, C.D.: The planar tree packing theorem. JoCG 8(2), 109–177 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Hedetniemi, S., Hedetniemi, S., Slater, P.: A note on packing two trees into \(K_n\). Ars Combin. 11, 149–153 (1981)

    MathSciNet  MATH  Google Scholar 

  11. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017)

    Article  MathSciNet  Google Scholar 

  12. Korzhik, V.P.: Minimal non-1-planar graphs. Discrete Math. 308(7), 1319–1327 (2008)

    Article  MathSciNet  Google Scholar 

  13. Mahéo, M., Saclé, J., Wozniak, M.: Edge-disjoint placement of three trees. Eur. J. Comb. 17(6), 543–563 (1996)

    Article  MathSciNet  Google Scholar 

  14. Oda, Y., Ota, K.: Tight planar packings of two trees. In: 22nd European Workshop on Computational Geometry (2006)

    Google Scholar 

  15. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)

    Article  MathSciNet  Google Scholar 

  16. Ringel, G.: Ein sechsfarbenproblem auf der kugel. Abh. Math. Semin. Univ. Hamburg 29(1–2), 107–117 (1965)

    Article  MathSciNet  Google Scholar 

  17. Sauer, N., Spencer, J.: Edge disjoint placement of graphs. J. Comb. Theory Ser. B 25(3), 295–302 (1978)

    Article  MathSciNet  Google Scholar 

  18. Wang, H., Sauer, N.: Packing three copies of a tree into a complete graph. Eur. J. Comb. 14(2), 137–142 (1993)

    Article  MathSciNet  Google Scholar 

  19. Wozniak, M., Wojda, A.P.: Triple placement of graphs. Graphs Comb. 9(1), 85–91 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Tappini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Luca, F. et al. (2020). Packing Trees into 1-Planar Graphs. In: Rahman, M., Sadakane, K., Sung, WK. (eds) WALCOM: Algorithms and Computation. WALCOM 2020. Lecture Notes in Computer Science(), vol 12049. Springer, Cham. https://doi.org/10.1007/978-3-030-39881-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39881-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39880-4

  • Online ISBN: 978-3-030-39881-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics