Skip to main content

Craig Interpolation of Epistemic Logics with Distributed Knowledge

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12012))

Abstract

Distributed Knowledge among agents is an important topic in multi-agent systems. While semantic studies of distributed knowledge have been done by several authors in the context of epistemic logic, there are a few proof-theoretic studies. This paper provides cut-free Gentzen-style sequent calculi for epistemic logics with distributed knowledge and establishes Craig Interpolation Theorem for the logics by a constructive method, i.e., Maehara method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fagin et al. [3, p. 3] state as intuitive description for distributed knowledge “a group has distributed knowledge of a fact \(\varphi \) if the knowledge of \(\varphi \) is distributed among its members, so that by pooling their knowledge together the members of the group can deduce \(\varphi \)”. This seems clearer, at first sight, than the explanation we give here. Ågotnes et al. [1] states, however, that the above intuitive description is inappropriate by an illustrative example given in [1, Section 1].

  2. 2.

    In case 4, we assume the condition for both rule applications, because if the one of the two rule applications does not satisfy the condition, the whole derivation should be categorized into one of the rest cases.

  3. 3.

    Note that the condition \(\bigcup _{i=1}^n G_i \cup \bigcup _{j=1}^m H_j\subseteq H\) in \(\mathcal {E}\) can be obtained by the conditions \(\bigcup _{i=1}^n G_i \subseteq G\) and \(G \cup \bigcup _{j=1}^m H_j\subseteq H\) in \(\mathcal {D}\) through “cutting” G.

References

  1. Ågotnes, T., Wáng, Y.N.: Resolving distributed knowledge. Artif. Intell. 252, 1–21 (2017). https://doi.org/10.1016/j.artint.2017.07.002

    Article  MathSciNet  MATH  Google Scholar 

  2. ten Cate, B.: Interpolation for extended modal languages. J. Symbolic Log. 70(1), 223–234 (2005). https://doi.org/10.2178/jsl/1107298517

    Article  MathSciNet  MATH  Google Scholar 

  3. Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  4. Gentzen, G.: Untersuchungen über das logische Schließen I. Mathematische Zeitschrift 39(1), 176–210 (1935). https://doi.org/10.1007/BF01201353

    Article  MathSciNet  MATH  Google Scholar 

  5. Gentzen, G.: Untersuchungen über das logische Schließen II. Mathematische Zeitschrift 39(1), 405–431 (1935). https://doi.org/10.1007/BF01201363

    Article  MathSciNet  MATH  Google Scholar 

  6. Gerbrandy, J.: Bisimulations on planet Kripke. Ph.D. thesis, University of Amsterdam (1999)

    Google Scholar 

  7. Giedra, H.: Cut free sequent calculus for logic \({S5_n (ED)}\). Lietuvos matematikos rinkinys 51, 336–341 (2010)

    MATH  Google Scholar 

  8. Hakli, R., Negri, S.: Proof theory for distributed knowledge. In: Sadri, F., Satoh, K. (eds.) CLIMA 2007. LNCS (LNAI), vol. 5056, pp. 100–116. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88833-8_6

    Chapter  Google Scholar 

  9. Maehara, S.: Craig no interpolation theorem (Craig’s interpolation theorem). Sugaku 12(4), 235–237 (1961). https://doi.org/10.11429/sugaku1947.12.235

    Article  MATH  Google Scholar 

  10. Meyer, J.J.C., Hoek, W.V.D.: Epistemic Logic for AI and Computer Science. Cambridge University Press, New York (1995)

    Book  Google Scholar 

  11. Ohnishi, M., Matsumoto, K.: Gentzen method in modal calculi II. Osaka Math. J. 11(2), 115–120 (1959)

    MathSciNet  MATH  Google Scholar 

  12. Ono, H.: Proof-theoretic methods in nonclassical logic-an introduction. In: Takahashi, M., Okada, M., Dezani-Ciancaglini, M. (eds.) Theories of Types and Proofs, MSJ Memoirs, vol. 2, pp. 207–254. The Mathematical Society of Japan, Tokyo, Japan (1998). https://doi.org/10.2969/msjmemoirs/00201C060

    Google Scholar 

  13. Pliuskevicius, R., Pliuskeviciene, A.: Termination of derivations in a fragment of transitive distributed knowledge logic. Informatica Lith. Acad. Sci. 19, 597–616 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Poggiolesi, F.: Gentzen Calculi for Modal Propositional Logic. Trends in Logic. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-9670-8

    Book  MATH  Google Scholar 

  15. Punčochář, V., Sedlár, I.: Substructural logics for pooling information. In: Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp. 407–421. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55665-8_28

    Chapter  Google Scholar 

  16. Roelofsen, F.: Distributed knowledge. J. Appl. Non-Class. Log. 17(2), 255–273 (2007)

    Article  MathSciNet  Google Scholar 

  17. Takano, M.: Subformula property as a substitute for cut-elimination in modal propositional logics. Math. Jpn. 37, 1129–1145 (1992)

    MathSciNet  MATH  Google Scholar 

  18. Takano, M.: A semantical analysis of cut-free calculi for modal logics. Rep. Math. Log. 53, 43–65 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Van Der Hoek, W., Van Linder, B., Meyer, J.J.: Group knowledge is not always distributed (neither is it always implicit). Math. Soc. Sci. 38(2), 215–240 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We thank three reviewers of FoIKS 2020 for their helpful comments. The work of both authors was partially supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (C) Grant Number 19K12113 and JSPS Core-to-Core Program (A. Advanced Research Networks). The second author was also partially supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (B) Grant Number 17H02258.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Murai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murai, R., Sano, K. (2020). Craig Interpolation of Epistemic Logics with Distributed Knowledge. In: Herzig, A., Kontinen, J. (eds) Foundations of Information and Knowledge Systems. FoIKS 2020. Lecture Notes in Computer Science(), vol 12012. Springer, Cham. https://doi.org/10.1007/978-3-030-39951-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39951-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39950-4

  • Online ISBN: 978-3-030-39951-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics