Skip to main content

Diversity, Dependence and Independence

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12012))

Abstract

We introduce the concepts of dependence and independence in a very general framework. We use a concept of rank to study dependence and independence. By means of the rank we identify (total) dependence with inability to create more diversity, and (total) independence with the presence of maximum diversity. We show that our theory of dependence and independence covers a variety of dependence concepts, for example the seemingly unrelated concepts of linear dependence in algebra and dependence of variables in logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Since set union is commutative, it also follows that if \(\Vert xyz\Vert = \Vert x\Vert + \Vert yz\Vert \) then \(\Vert xz\Vert = \Vert x\Vert + \Vert z\Vert \).

  2. 2.

    Equivalently, it is possible to define matroids in terms of its independent sets (that is, the x such that \(r(x) = |x|\)), in terms of circuits (maximal independent sets), in terms of bases (minimal non-independent sets), or closure operations. All these definitions are equivalent. We refer the reader to [11] for more details.

  3. 3.

    In general, in Dependence and Independence Logic teams do not necessarily have to be finite, but we will focus on the finite case in this example.

  4. 4.

    In this work, \(\log \) will always represent the base-2 logarithm.

  5. 5.

    Nothing in this example hinges on A being the same for all \(v \in M\), but we will assume so for simplicity.

  6. 6.

    More precisely, this theorem shows that \(H(xy)-H(x) = -\sum _{m} P(x = m) \sum _{m'} P(y=m'|x=m)\log P(y=m'|x=m)\), and the right hand side is straightforwardly seen to be non-negative.

  7. 7.

    Strictly speaking, this theorem states that \(H(x) - H(x|y) \ge 0\), but if we consider the above inequality with respect to distributions already conditioned on z the result follows at once.

  8. 8.

    If one is uninterested in independence statements \(x \ \bot \ y\) in which x and y overlap, this axiom can be removed. Our proof of Theorem 2 then reduces essentially to the proof in [4].

References

  1. Armstrong, W.W.: Dependency structures of data base relationships. Inf. Process. 74, 580–583 (1974)

    MathSciNet  MATH  Google Scholar 

  2. Cover, T.M., Thomas, J.A.: Entropy, relative entropy and mutual information. Elem. Inf. Theory 2, 1–55 (1991)

    Google Scholar 

  3. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team semantics. In: Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol. 10833, pp. 186–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90050-6_11

    Chapter  MATH  Google Scholar 

  4. Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving probabilistic independence. Inf. Comput. 91(1), 128–141 (1991)

    Article  MathSciNet  Google Scholar 

  5. Grädel, E., Väänänen, J.: Dependence and independence. Stud. Logica. 101(2), 399–410 (2013)

    Article  MathSciNet  Google Scholar 

  6. Hannula, M., Hirvonen, Å., Kontinen, J., Kulikov, V., Virtema, J.: Facets of distribution identities in probabilistic team semantics. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468, pp. 304–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0_20

    Chapter  Google Scholar 

  7. Hella, L., Luosto, K., Sano, K., Virtema, J.: The expressive power of modal dependence logic. In: Advances in Modal Logic, vol. 10, pp. 294–312. Coll. Publ., London (2014)

    Google Scholar 

  8. Hyttinen, T., Paolini, G., Väänänen, J.: A logic for arguing about probabilities in measure teams. Arch. Math. Logic 56(5–6), 475–489 (2017)

    Article  MathSciNet  Google Scholar 

  9. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the specification and verification of hyperproperties. In: 43rd International Symposium on Mathematical Foundations of Computer Science, LIPIcs. Leibniz International Proceedings of the Information, vol. 117, pages Art. No. 10, 16. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2018)

    Google Scholar 

  10. Mann, A.L., Sandu, G., Sevenster, M.: Independence-Friendly Logic. London Mathematical Society Lecture Note Series, vol. 386. Cambridge University Press, Cambridge (2011). A game-theoretic approach

    Google Scholar 

  11. Oxley, J.G.: Matroid Theory, vol. 3. Oxford University Press, New York (2006)

    MATH  Google Scholar 

  12. Väänänen, J.: Dependence Logic. London Mathematical Society Student Texts, vol. 70. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  13. Väänänen, J.: Modal Dependence Logic. New Perspectives on Games and Interaction. Texts Log. Games, vol. 4, pp. 237–254. Amsterdam Univ. Press, Amsterdam (2008)

    Google Scholar 

  14. van der Waerden, B.L.: Moderne Algebra. Springer, Berlin (1940)

    Book  Google Scholar 

  15. Whitney, H.: On the abstract properties of linear dependence. Amer. J. Math. 57(3), 509–533 (1935)

    Article  MathSciNet  Google Scholar 

  16. Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Logic 167(7), 557–589 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for a number of helpful comments and suggestions. The research of the second author was partially supported by grant 322795 of the Academy of Finland, and a grant of the Faculty of Science of the University of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Galliani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galliani, P., Väänänen, J. (2020). Diversity, Dependence and Independence. In: Herzig, A., Kontinen, J. (eds) Foundations of Information and Knowledge Systems. FoIKS 2020. Lecture Notes in Computer Science(), vol 12012. Springer, Cham. https://doi.org/10.1007/978-3-030-39951-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39951-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39950-4

  • Online ISBN: 978-3-030-39951-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics