Skip to main content

Opportunities and Advances in Radiomics and Radiogenomics in Neuro-Oncology

  • Conference paper
  • First Online:
Radiomics and Radiogenomics in Neuro-oncology (RNO-AI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11991))

Abstract

Neuro-oncology broadly encompasses life threatening malignancies of the brain and spinal cord including both primary as well as lesions metastasizing to the central nervous system. The biggest clinical challenge in the field currently is to be able to design personalized treatment management solutions in patients based on apriori knowledge of their survival outcome or response to conventional or experimental treatments. Radiomics or the quantitative extraction of subvisual data from conventional radiographic imaging and radiogenomics, statistically correlating radiomic features with point-mutations and next generation sequencing data, have recently emerged as unique mechanisms to offer insights into answering some of these clinically relevant questions related to diagnosis, classification, prognosis as well as assessing treatment response. In this review, we provide an overview of the framework for radiomic and radiogenomic approaches in neuro-oncology, including a brief description of the techniques commonly employed. Further, we will provide a review of some of the existing applications of radiomics and radiogenomics in neuro-oncology for tumor classification, survival prognosis, predicting response to therapies, as well as distinguishing benign post-treatment changes from tumor recurrence, using routine MRI scans. While highly promising, the clinical acceptance of radiomics and radiogenomics techniques will largely hinge on their resilience to non-standardization across imaging protocols, as well as in their ability to demonstrate reproducibility across large multi-institutional cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rouse, C., Gittleman, H., Ostrom, Q.T., Kruchko, C., Barnholtz-Sloan, J.S.: Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro Oncol. 18(1), 70–77 (2016)

    Google Scholar 

  2. Wrensch, M., Minn, Y., Chew, T., Bondy, M., Berger, M.S.: Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro-oncology 4(4), 278–299 (2002)

    Google Scholar 

  3. DeAngelis, L.M.: Brain tumors. N. Engl. J. Med. 344(2), 114–123 (2001)

    Google Scholar 

  4. Fisher, J.L., Schwartzbaum, J.A., Wrensch, M., Wiemels, J.L.: Epidemiology of brain tumors. Neurol. Clin. 25(4), 867–890 (2007)

    Google Scholar 

  5. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2015)

    Google Scholar 

  6. Lambin, P., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012)

    Google Scholar 

  7. Prasanna, P., Patel, J., Partovi, S., Madabhushi, A., Tiwari, P.: Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur. Radiol. 27, 4188–4197 (2016)

    Google Scholar 

  8. Tiwari, P., et al.: Computer-extracted texture features to distinguish cerebral radionecrosis from recurrent brain tumors on multiparametric MRI: a feasibility study. Am. J. Neuroradiol. 37(12), 2231–2236 (2016)

    Google Scholar 

  9. Ismail, M., et al.: Shape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: a multisite study. Am. J. Neuroradiol. 39(12), 2187–2193 (2018)

    Google Scholar 

  10. Hu, X., Wong, K.K., Young, G.S., Guo, L., Wong, S.T.: Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J. Magn. Reson. Imaging 33(2), 296–305 (2011)

    Google Scholar 

  11. Kickingereder, P., et al.: Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin. Cancer Res. 22(23), 5765–5771 (2016)

    Google Scholar 

  12. Kickingereder, P., et al.: Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280(3), 880–889 (2016)

    Google Scholar 

  13. Rathore, S., et al.: Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci. Rep. 8(1), 1–12 (2018)

    Google Scholar 

  14. Beig, N., et al.: Radiogenomic analysis of hypoxia pathway is predictive of overall survival in Glioblastoma. Sci. Rep. 8(1), 7 (2018)

    Google Scholar 

  15. Beig, N., et al.: Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas. Radiology 290(3), 783–792 (2018)

    Google Scholar 

  16. Khorrami, M., et al.: Combination of peri- and intratumoral radiomic features on baseline CT scans predicts response to chemotherapy in lung adenocarcinoma. Radiol.: Artif. Intell. 1(2), 180012 (2019)

    Google Scholar 

  17. Khorrami, M., et al.: Predicting pathologic response to neoadjuvant chemoradiation in resectable stage III non-small cell lung cancer patients using computed tomography radiomic features. Lung Cancer 1(135), 1–9 (2019)

    Google Scholar 

  18. Bera, K., Velcheti, V., Madabhushi, A.: Novel quantitative imaging for predicting response to therapy: techniques and clinical applications. Am. Soc. Clin. Oncol. Educ. Book 38, 1008–1018 (2018)

    Google Scholar 

  19. Thawani, R., et al.: Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer 115, 34–41 (2018)

    Google Scholar 

  20. Antunes, J., et al.: Coregistration of preoperative MRI with ex vivo mesorectal pathology specimens to spatially map post-treatment changes in rectal cancer onto in vivo imaging. Acad. Radiol. 25, 833–841 (2018)

    Google Scholar 

  21. Antunes, J., Prasanna, P., Madabhushi, A., Tiwari, P., Viswanath, S.: RADIomic spatial TexturAl descripTor (RADISTAT): characterizing intra-tumoral heterogeneity for response and outcome prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 468–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_53

    Chapter  Google Scholar 

  22. Barbur, I., et al.: Automated segmentation and radiomic characterization of visceral fat on bowel MRIs for Crohns disease. In: Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling. International Society for Optics and Photonics (2018)

    Google Scholar 

  23. Huang, X., et al.: CT-based radiomics signature to discriminate high-grade from low-grade colorectal adenocarcinoma. Acad. Radiol. 25(10), 1285–1297 (2018)

    Google Scholar 

  24. Liu, Z., et al.: Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin. Cancer Res. 23(23), 7253–7262 (2017)

    Google Scholar 

  25. Braman, N.M., et al.: Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res. 19(1), 57 (2017)

    MathSciNet  Google Scholar 

  26. Braman, N., et al.: Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2) positive breast cancer. JAMA Netw. Open. 2(4), e192561 (2019)

    Google Scholar 

  27. Ginsburg, S.B., et al.: Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study: radiomic Features for Prostate Cancer Detection on MRI. J. Magn. Reson. Imag. 46(1), 184–193 (2017)

    Google Scholar 

  28. Ghose, S., et al.: Prostate shapes on pre-treatment MRI between prostate cancer patients who do and do not undergo biochemical recurrence are different: preliminary findings. Sci. Rep. 7(1), 1–8 (2017)

    MathSciNet  Google Scholar 

  29. Louis, D.N., et al.: The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016)

    Google Scholar 

  30. Liang, Y., et al.: Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc. Natl. Acad. Sci. 102(16), 5814–5819 (2005)

    Google Scholar 

  31. Rich, J.N., et al.: Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res. 65(10), 4051–4058 (2005)

    Google Scholar 

  32. Ellingson, B.M.: Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr. Neurol. Neurosci. Rep. 15(1), 506 (2015)

    Google Scholar 

  33. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32(4), 582–596 (2019)

    Google Scholar 

  34. VASARI Research Project - The Cancer Imaging Archive (TCIA) Public Access - Cancer Imaging Archive. https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project

  35. Prasanna, P., et al.: Radiographic-deformation and textural heterogeneity (r-DepTH): an integrated descriptor for brain tumor prognosis. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 459–467. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_52

    Chapter  Google Scholar 

  36. Marelja, S.: Mathematical description of the responses of simple cortical cells. JOSA 70(11), 1297–1300 (1980)

    MathSciNet  Google Scholar 

  37. Prasanna, P., Tiwari, P., Madabhushi, A.: Co-occurrence of local anisotropic gradient orientations (CoLlAGe): a new radiomics descriptor. Sci. Rep. 6(1), 37241 (2016)

    Google Scholar 

  38. Friedman, J.H.: On bias, variance, 0/1loss, and the curse-of-dimensionality. Data Min. Knowl. Discov. 1(1), 55–77 (1997)

    MathSciNet  Google Scholar 

  39. Kickingereder, P., et al.: Radiogenomics of glioblastoma: machine learningbased classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281(3), 907–918 (2016)

    Google Scholar 

  40. Cho, H., Lee, S., Kim, J., Park, H.: Classification of the glioma grading using radiomics analysis. PeerJ 22(6), e5982 (2018)

    Google Scholar 

  41. Lu, C.-F., et al.: Machine learning-based radiomics for molecular subtyping of gliomas. Clin. Cancer Res. 24(18), 4429–4436 (2018)

    Google Scholar 

  42. Tixier, F., et al.: Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone. Oncotarget 10(6), 660–672 (2019)

    Google Scholar 

  43. Bae, S., et al.: Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 289(3), 797–806 (2018)

    Google Scholar 

  44. Wen, P.Y., et al.: Updated response assessment criteria for high- grade gliomas: response assessment in neuro-oncology working group. JCO 28(11), 1963–1972 (2010)

    Google Scholar 

  45. Hsieh, K.L.-C., Chen, C.-Y., Lo, C.-M.: Radiomic model for predicting mutations in the isocitrate dehydrogenase gene in glioblastomas. Oncotarget 8(28), 45888–45897 (2017)

    Google Scholar 

  46. Liao, X., Cai, B., Tian, B., Luo, Y., Song, W., Li, Y.: Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time. J. Cell. Mol. Med. 23(6), 4375–4385 (2019)

    Google Scholar 

  47. Xi, Y.-B., et al.: Radiomics signature: a potential biomarker for the prediction of MGMT promoter methylation in glioblastoma. J. Magn. Reson. Imaging 47(5), 1380–1387 (2018)

    Google Scholar 

  48. Gutman, D.A., et al.: Somatic mutations associated with MRI-derived volumetric features in glioblastoma. Neuroradiology 57(12), 1227–1237 (2015)

    Google Scholar 

  49. Gevaert, O., et al.: Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273(1), 168–174 (2014)

    Google Scholar 

  50. Hu, L.S., et al.: Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro Oncol. 19(1), 128–137 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bera, K., Beig, N., Tiwari, P. (2020). Opportunities and Advances in Radiomics and Radiogenomics in Neuro-Oncology. In: Mohy-ud-Din, H., Rathore, S. (eds) Radiomics and Radiogenomics in Neuro-oncology. RNO-AI 2019. Lecture Notes in Computer Science(), vol 11991. Springer, Cham. https://doi.org/10.1007/978-3-030-40124-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40124-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40123-8

  • Online ISBN: 978-3-030-40124-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics