Abstract
In this work, we propose a new table-based block cipher structure, dubbed \( \mathsf {FPL} \), that can be used to build white-box secure block ciphers. Our construction is a balanced Feistel cipher, where the input to each round function determines multiple indices for the underlying table via a probe function, and the sum of the values from the table becomes the output of the round function. We identify the properties of the probe function that make the resulting block cipher white-box secure in terms of weak and strong space hardness against known-space and non-adaptive chosen-space attacks. Our construction, enjoying rigorous provable security without relying on any ideal primitive, provides flexibility to the block size and the table size, and permits parallel table look-ups.
We also propose a concrete instantiation of \( \mathsf {FPL} \), dubbed \( \mathsf {FPL}_{\mathsf {AES}} \), using (round-reduced) \(\mathsf {AES}\) for the underlying table and probe functions. Our implementation shows that \( \mathsf {FPL}_{\mathsf {AES}} \) provides stronger security without significant loss of efficiency, compared to existing schemes including \(\mathsf {SPACE}\), \(\mathsf {WhiteBlock}\) and \(\mathsf {WEM}\).
J. Lee was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT), No. NRF-2017R1E1A1A03070248.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
It would also be possible to tweak the probe function when it is instantiated with a pseudorandom function such as \( \mathsf {AES} \).
- 3.
A table-based block cipher \( \widetilde{E} \) can be regarded as keyed since each table in \( \mathcal {F} _{s,t}\) can be indexed by \(t\cdot 2^s\) bits.
- 4.
We assume that \(0<(B/A)^{\frac{1}{d}}<rd2^s\). All the parameters in Table 1 satisfy this inequality.
- 5.
We let \(r'C(q/r')=0\) when \(r'=0\).
- 6.
The definition can be straightforwardly extended to \(s>16\).
- 7.
Any constant key will not affect the overall security (compared to \(\mathbf {0}_{128}\)).
- 8.
This is the table size of \(\mathsf {WEM}\) for their recommended parameters.
References
Bellare, M., Dai, W.: Defending against key exfiltration: efficiency improvements for big-key cryptography via large-alphabet subkey prediction. In: Proceedings of the 22nd ACM SIGSAG Conference on Computer and Communications Security, pp. 923–940. ACM (2017)
Bellare, M., Kane, D., Rogaway, P.: Big-key symmetric encryption: resisting key exfiltration. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 373–402. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_14
Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES implementation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4_16
Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on the ASASA structure: black-box, white-box, and public-key (extended abstract). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_4
Blondeau, C., Bogdanov, A., Leander, G.: Bounds in shallows and in miseries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 204–221. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_12
Bogdanov, A., Isobe, T.: White-box cryptography revisited: space-hard ciphers. In: Proceedings of the 22nd ACM SIGSAG Conference on Computer and Communications Security, pp. 1058–1069. ACM (2015)
Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptography: optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 126–158. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_5
Cho, J., Choi, K.Y., Dinur, I., Dunkelman, O., Keller, N., Moon, D., Veidberg, A.: WEM: a new family of white-box black ciphers based on the even-mansour construction. In: Handschuh, H. (ed.) Topics in Cryptology - CT-RSA 2017. LNCS, vol. 10159, pp. 293–308. Springer, Berlin (2017)
Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_17
Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials in block ciphers. J. Math. Cryptol. 1(3), 221–242 (2007)
Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 247–264. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_13
Fouque, P.-A., Karpman, P., Kirchner, P., Minaud, B.: Efficient and provable white-box primitives. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 159–188. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_6
Gilbert, H., Plût, J., Treger, J.: Key-recovery attack on the ASASA cryptosystem with expanding S-boxes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 475–490. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_23
Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_14
Lin, T.-T., Lai, X.-J., Xue, W.-J., Jia, Y.: A new feistel-type white-box encryption scheme. J. Comput. Sci. Technol. 32(2), 386–395 (2017)
Minaud, B., Derbez, P., Fouque, P.-A., Karpman, P.: Key-recovery attacks on ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 3–27. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_1
Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box DES implementations with arbitrary external encodings. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77360-3_17
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kwon, J., Lee, B., Lee, J., Moon, D. (2020). \( \mathsf {FPL} \): White-Box Secure Block Cipher Using Parallel Table Look-Ups. In: Jarecki, S. (eds) Topics in Cryptology – CT-RSA 2020. CT-RSA 2020. Lecture Notes in Computer Science(), vol 12006. Springer, Cham. https://doi.org/10.1007/978-3-030-40186-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-40186-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-40185-6
Online ISBN: 978-3-030-40186-3
eBook Packages: Computer ScienceComputer Science (R0)