Abstract
Semi-invasive fault injection attacks are powerful techniques well-known by attackers and secure embedded system designers. When performing such attacks, the selection of the fault injection parameters is of utmost importance and usually based on the experience of the attacker. Surprisingly, there exists no formal and general approach to characterize the target behavior under attack. In this work, we present a novel methodology to perform a fast characterization of the fault injection impact on a target, depending on the possible attack parameters. We experimentally show our methodology to be a successful one when targeting different algorithms such as DES and AES encryption and then extend to the full characterization with the help of deep learning. Finally, we show how the characterization results are transferable between different targets.
G. Ribera and N. Beringuier-Boher—Independent Researcher.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_2
Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch it if you can: parameter search strategies for successful fault injection. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 236–252. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_16
Picek, S., Batina, L., Jakobović, D., Carpi, R.B.: Evolving genetic algorithms for fault injection attacks. In: 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1106–1111. IEEE (2014)
Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault injection with a new flavor: memetic algorithms make a difference. In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 159–173. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_11
Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_4
Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard processors. In: Proceedings of the USENIX Workshop on Smartcard Technology on USENIX Workshop on Smartcard Technology, p. 2. Berkeley, CA, USA, USENIX Association (1999)
Skorobogatov, S.: Optical fault masking attacks. In: 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 23–29. August 2010
van Woudenberg, J.G.J., Witteman, M.F., Menarini, F.: Practical optical fault injection on secure microcontrollers. In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 91–99. September 2011
Leveugle, R., et al.: Laser-induced fault effects in security-dedicated circuits. In: 2014 22nd International Conference on Very Large Scale Integration (VLSI-SoC), pp. 1–6. IEEE (2014)
Guillen, O.M., Gruber, M., De Santis, F.: Low-cost setup for localized semi-invasive optical fault injection attacks. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp. 207–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3_13
Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures - profiling attacks without pre-processing. In: Proceedings of International Conference on Cryptographic Hardware and Embedded Systems - CHES 2017–19th, Taipei, Taiwan, 25–28 September 2017, pp. 45–68 (2017)
Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2019)
Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(3), 148–179 (2019)
Maldini, A., Samwel, N., Picek, S., Batina, L.: Genetic algorithm-based electromagnetic fault injection. In: 2018 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 35–42. September 2018
Zhou, Y.B., Feng, D.G.: Side-channel attacks: ten years after its publication and the impacts on cryptographic module security testing. IACR Cryptol. ePrint Archive 2005, 388 (2005)
Tria, A., Choukri, H.: Invasive attacks. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security, pp. 623–629. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-5906-5
Kumar, R., Jovanovic, P., Polian, I.: Precise fault-injections using voltage and temperature manipulation for differential cryptanalysis. In: 2014 IEEE 20th International On-Line Testing Symposium (IOLTS), pp. 43–48. IEEE (2014)
Picek, S., et al.: Side-channel analysis and machine learning: a practical perspective. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4095–4102. IEEE (2017)
Skorobogatov, S.P.: Semi-invasive attacks: a new approach to hardware security analysis (2005)
Johnston, A.H.: Charge generation and collection in PN junctions excited with pulsed infrared lasers. IEEE Trans. Nuclear Sci. 40(6), 1694–1702 (1993)
Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Semi-invasive EM attack on FGPA RO PUFs and countermeasures. In: Proceedings of the Workshop on Embedded Systems Security, WESS 2011, pp. 2:1–2:9, New York, NY, USA, ACM (2011)
Beringuier-Boher, N., Lacruche, M., El-Baze, D., Dutertre, J.-M., Rigaud, J.-B., Maurine, P.: Body biasing injection attacks in practice. In: Proceedings of the Third Workshop on Cryptography and Security in Computing Systems, pp. 49–54. ACM (2016)
Gurney, K.: An Introduction to Neural Networks. CRC Press, Boca Raton (2014)
Collobert, R., Bengio, S.: Links between perceptrons, MLPs and SVMs. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 23. New York, NY, USA, ACM (2004)
LeNail, A.: NN-SVG: publication-ready neural network architecture schematics. J. Open Source Softw. 4(33), 747 (2019)
Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259
Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005). https://doi.org/10.1007/11506447_4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, L., Ribera, G., Beringuier-Boher, N., Picek, S. (2020). A Fast Characterization Method for Semi-invasive Fault Injection Attacks. In: Jarecki, S. (eds) Topics in Cryptology – CT-RSA 2020. CT-RSA 2020. Lecture Notes in Computer Science(), vol 12006. Springer, Cham. https://doi.org/10.1007/978-3-030-40186-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-40186-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-40185-6
Online ISBN: 978-3-030-40186-3
eBook Packages: Computer ScienceComputer Science (R0)