Skip to main content

A Fast Characterization Method for Semi-invasive Fault Injection Attacks

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2020 (CT-RSA 2020)

Abstract

Semi-invasive fault injection attacks are powerful techniques well-known by attackers and secure embedded system designers. When performing such attacks, the selection of the fault injection parameters is of utmost importance and usually based on the experience of the attacker. Surprisingly, there exists no formal and general approach to characterize the target behavior under attack. In this work, we present a novel methodology to perform a fast characterization of the fault injection impact on a target, depending on the possible attack parameters. We experimentally show our methodology to be a successful one when targeting different algorithms such as DES and AES encryption and then extend to the full characterization with the help of deep learning. Finally, we show how the characterization results are transferable between different targets.

G. Ribera and N. Beringuier-Boher—Independent Researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_2

    Chapter  Google Scholar 

  2. Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch it if you can: parameter search strategies for successful fault injection. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 236–252. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_16

    Chapter  Google Scholar 

  3. Picek, S., Batina, L., Jakobović, D., Carpi, R.B.: Evolving genetic algorithms for fault injection attacks. In: 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1106–1111. IEEE (2014)

    Google Scholar 

  4. Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault injection with a new flavor: memetic algorithms make a difference. In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 159–173. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_11

    Chapter  Google Scholar 

  5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_4

    Chapter  Google Scholar 

  6. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard processors. In: Proceedings of the USENIX Workshop on Smartcard Technology on USENIX Workshop on Smartcard Technology, p. 2. Berkeley, CA, USA, USENIX Association (1999)

    Google Scholar 

  7. Skorobogatov, S.: Optical fault masking attacks. In: 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 23–29. August 2010

    Google Scholar 

  8. van Woudenberg, J.G.J., Witteman, M.F., Menarini, F.: Practical optical fault injection on secure microcontrollers. In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 91–99. September 2011

    Google Scholar 

  9. Leveugle, R., et al.: Laser-induced fault effects in security-dedicated circuits. In: 2014 22nd International Conference on Very Large Scale Integration (VLSI-SoC), pp. 1–6. IEEE (2014)

    Google Scholar 

  10. Guillen, O.M., Gruber, M., De Santis, F.: Low-cost setup for localized semi-invasive optical fault injection attacks. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp. 207–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3_13

    Chapter  Google Scholar 

  11. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures - profiling attacks without pre-processing. In: Proceedings of International Conference on Cryptographic Hardware and Embedded Systems - CHES 2017–19th, Taipei, Taiwan, 25–28 September 2017, pp. 45–68 (2017)

    Google Scholar 

  12. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2019)

    Google Scholar 

  13. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(3), 148–179 (2019)

    Google Scholar 

  14. Maldini, A., Samwel, N., Picek, S., Batina, L.: Genetic algorithm-based electromagnetic fault injection. In: 2018 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 35–42. September 2018

    Google Scholar 

  15. Zhou, Y.B., Feng, D.G.: Side-channel attacks: ten years after its publication and the impacts on cryptographic module security testing. IACR Cryptol. ePrint Archive 2005, 388 (2005)

    Google Scholar 

  16. Tria, A., Choukri, H.: Invasive attacks. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security, pp. 623–629. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-5906-5

    Chapter  Google Scholar 

  17. Kumar, R., Jovanovic, P., Polian, I.: Precise fault-injections using voltage and temperature manipulation for differential cryptanalysis. In: 2014 IEEE 20th International On-Line Testing Symposium (IOLTS), pp. 43–48. IEEE (2014)

    Google Scholar 

  18. Picek, S., et al.: Side-channel analysis and machine learning: a practical perspective. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4095–4102. IEEE (2017)

    Google Scholar 

  19. Skorobogatov, S.P.: Semi-invasive attacks: a new approach to hardware security analysis (2005)

    Google Scholar 

  20. Johnston, A.H.: Charge generation and collection in PN junctions excited with pulsed infrared lasers. IEEE Trans. Nuclear Sci. 40(6), 1694–1702 (1993)

    Article  Google Scholar 

  21. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Semi-invasive EM attack on FGPA RO PUFs and countermeasures. In: Proceedings of the Workshop on Embedded Systems Security, WESS 2011, pp. 2:1–2:9, New York, NY, USA, ACM (2011)

    Google Scholar 

  22. Beringuier-Boher, N., Lacruche, M., El-Baze, D., Dutertre, J.-M., Rigaud, J.-B., Maurine, P.: Body biasing injection attacks in practice. In: Proceedings of the Third Workshop on Cryptography and Security in Computing Systems, pp. 49–54. ACM (2016)

    Google Scholar 

  23. Gurney, K.: An Introduction to Neural Networks. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  24. Collobert, R., Bengio, S.: Links between perceptrons, MLPs and SVMs. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 23. New York, NY, USA, ACM (2004)

    Google Scholar 

  25. LeNail, A.: NN-SVG: publication-ready neural network architecture schematics. J. Open Source Softw. 4(33), 747 (2019)

    Article  Google Scholar 

  26. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259

    Chapter  Google Scholar 

  27. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005). https://doi.org/10.1007/11506447_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stjepan Picek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, L., Ribera, G., Beringuier-Boher, N., Picek, S. (2020). A Fast Characterization Method for Semi-invasive Fault Injection Attacks. In: Jarecki, S. (eds) Topics in Cryptology – CT-RSA 2020. CT-RSA 2020. Lecture Notes in Computer Science(), vol 12006. Springer, Cham. https://doi.org/10.1007/978-3-030-40186-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40186-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40185-6

  • Online ISBN: 978-3-030-40186-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics