Skip to main content

Generalizations of the Intermediate Value Theorem for Approximating Fixed Points and Zeros of Continuous Functions

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11974))

Abstract

Generalizations of the traditional intermediate value theorem are presented. The obtained generalized theorems are particular useful for the existence of solutions of systems of nonlinear equations in several variables as well as for the existence of fixed points of continuous functions. Based on the corresponding criteria for the existence of a solution emanated by the intermediate value theorems, generalized bisection methods for approximating fixed points and zeros of continuous functions are given. These bisection methods require only algebraic signs of the function values and are of major importance for tackling problems with imprecise (not exactly known) information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alefeld, G., Frommer, A., Heindl, G., Mayer, J.: On the existence theorems of Kantorovich, Miranda and Borsuk. Electron. Trans. Numer. Anal. 17, 102–111 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Bolzano, B.: Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwei Werten, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege. Prague (1817)

    Google Scholar 

  3. Brouwer, L.E.J.: Ăœber Abbildungen von Mannigfaltigkeiten. Math. Ann. 71, 97–115 (1912)

    Google Scholar 

  4. Cauchy, A.-L.: Cours d’Analyse de l’École Royale Polytechnique, Paris (1821). (Reprinted in Oeuvres Completes, series 2, vol. 3)

    Google Scholar 

  5. Grapsa, T.N., Vrahatis, M.N.: Dimension reducing methods for systems of nonlinear equations and unconstrained optimization: a review. In: Katsiaris, G.A., Markellos, V.V., Hadjidemetriou, J.D. (eds.) Recent Advances in Mechanics and Related Fields - Volume in Honour of Professor Constantine L. Goudas, pp. 343–353. University of Patras Press, Patras (2003)

    Google Scholar 

  6. Heindl, G.: Generalizations of theorems of Rohn and Vrahatis. Reliable Comp. 21, 109–116 (2016)

    MathSciNet  Google Scholar 

  7. Jarník, V.: Bernard Bolzano and the foundations of mathematical analysis. In: Bolzano and the Foundations of Mathematical Analysis, pp. 33–42. Society of Czechoslovak Mathematicians and Physicists, Prague (1981)

    Google Scholar 

  8. Kavvadias, D.J., Makri, F.S., Vrahatis, M.N.: Locating and computing arbitrarily distributed zeros. SIAM J. Sci. Comput. 21(3), 954–969 (1999)

    Article  MathSciNet  Google Scholar 

  9. Kavvadias, D.J., Makri, F.S., Vrahatis, M.N.: Efficiently computing many roots of a function. SIAM J. Sci. Comput. 27(1), 93–107 (2005)

    Article  MathSciNet  Google Scholar 

  10. Kearfott, R.B.: A proof of convergence and an error bound for the method of bisection in \(\mathbb{R}^n\). Math. Comp. 32(144), 1147–1153 (1978)

    MathSciNet  MATH  Google Scholar 

  11. Kearfott, R.B.: An efficient degree-computation method for a generalized method of bisection. Numer. Math. 32, 109–127 (1979)

    Article  MathSciNet  Google Scholar 

  12. Knaster, B., Kuratowski, K., Mazurkiewicz, S.: Ein Beweis des Fixpunkt-satzes fĂ¼r \(n\)-dimensionale Simplexe. Fund. Math. 14, 132–137 (1929)

    Article  Google Scholar 

  13. Miranda, C.: Un’ osservatione su un theorema di Brouwer. Bollettino dell’U.M.I. 3, 5–7 (1940)

    Google Scholar 

  14. Mourrain, B., Vrahatis, M.N., Yakoubsohn, J.C.: On the complexity of isolating real roots and computing with certainty the topological degree. J. Complex. 18(2), 612–640 (2002)

    Article  MathSciNet  Google Scholar 

  15. Ortega J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Classics in Applied Mathematics, vol. 30. SIAM, PA (2000)

    Google Scholar 

  16. Poincaré, H.: Sur certaines solutions particulières du problème des trois corps. Comptes rendus de l’Académie des Sciences Paris 91, 251–252 (1883)

    MATH  Google Scholar 

  17. Poincaré, H.: Sur certaines solutions particulières du problème des trois corps. Bull. Astronomique 1, 63–74 (1884)

    MATH  Google Scholar 

  18. Scarf, H.: The approximation of fixed points of a continuous mapping. SIAM J. Appl. Math 15(5), 1328–1343 (1967)

    Article  MathSciNet  Google Scholar 

  19. Sikorski, K.: Bisection is optimal. Numer. Math. 40, 111–117 (1982)

    Article  MathSciNet  Google Scholar 

  20. Sikorski, K.: Optimal Solution of Nonlinear Equations. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  21. Sperner, E.: Neuer Beweis fĂ¼r die Invarianz der Dimensionszahl und des Gebietes. Abh. Math. Sem. Hamburg 6, 265–272 (1928)

    Article  MathSciNet  Google Scholar 

  22. Stenger, F.: Computing the topological degree of a mapping in \(\mathbb{R}^n\). Numer. Math. 25, 23–38 (1975)

    Article  MathSciNet  Google Scholar 

  23. Vrahatis, M.N.: An error estimation for the method of bisection in \(\mathbb{R}^n\). Bull. Greek Math. Soc. 27, 161–174 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Vrahatis, M.N.: Solving systems of nonlinear equations using the nonzero value of the topological degree. ACM Trans. Math. Softw. 14, 312–329 (1988)

    Article  MathSciNet  Google Scholar 

  25. Vrahatis, M.N.: CHABIS: a mathematical software package for locating and evaluating roots of systems of nonlinear equations. ACM Trans. Math. Softw. 14, 330–336 (1988)

    Article  MathSciNet  Google Scholar 

  26. Vrahatis, M.N.: A variant of Jung’s theorem. Bull. Greek Math. Soc. 29, 1–6 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Vrahatis, M.N.: A short proof and a generalization of Miranda’s existence theorem. Proc. Amer. Math. Soc. 107, 701–703 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Vrahatis, M.N.: An efficient method for locating and computing periodic orbits of nonlinear mappings. J. Comput. Phys. 119, 105–119 (1995)

    Article  MathSciNet  Google Scholar 

  29. Vrahatis, M.N.: Simplex bisection and Sperner simplices. Bull. Greek Math. Soc. 44, 171–180 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Vrahatis, M.N.: Generalization of the Bolzano theorem for simplices. Topol. Appl. 202, 40–46 (2016)

    Article  MathSciNet  Google Scholar 

  31. Vrahatis, M.N.: Intermediate value theorem for simplices for simplicial approximation of fixed points and zeros. Topol. Appl. (2019). Accepted for Publication

    Google Scholar 

  32. Vrahatis, M.N., Androulakis, G.S., Manoussakis, G.E.: A new unconstrained optimization method for imprecise function and gradient values. J. Math. Anal. Appl. 197(2), 586–607 (1996)

    Article  MathSciNet  Google Scholar 

  33. Vrahatis, M.N., Iordanidis, K.I.: A rapid generalized method of bisection for solving systems of non-linear equations. Numer. Math. 49, 123–138 (1986)

    Article  MathSciNet  Google Scholar 

  34. Vrahatis, M.N., Ragos, O., Skiniotis, T., Zafiropoulos, F., Grapsa, T.N.: RFSFNS: a portable package for the numerical determination of the number and the calculation of roots of Bessel functions. Comput. Phys. Commun. 92, 252–266 (1995)

    Article  Google Scholar 

  35. Zottou, D.-N.A., Kavvadias, D.J., Makri, F.S., Vrahatis, M.N.: MANBIS—A C++ mathematical software package for locating and computing efficiently many roots of a function: theoretical issues. ACM Trans. Math. Softw. 44(3), 1–7 (2018). Article no. 35

    Article  Google Scholar 

Download references

Acknowledgment

The author would like to thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N. Vrahatis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vrahatis, M.N. (2020). Generalizations of the Intermediate Value Theorem for Approximating Fixed Points and Zeros of Continuous Functions. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40616-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40615-8

  • Online ISBN: 978-3-030-40616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics