Skip to main content

Modelling Population Size Using Horvitz-Thompson Approach Based on the Zero-Truncated Poisson Lindley Distribution

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11974))

  • 671 Accesses

Abstract

Capture-recapture analysis is applied to estimate population size in ecology, biology, social science, medicine, linguistics and software engineering. The Poisson distribution is one of the simplest models for count data and appropriate for homogeneous populations. On the other hand, it is found to underestimate the counts for overdispersed data. In this study, population size estimation using the mixture of Poisson and Lindley distribution is proposed. It can exhibit overdispersed, equidispersed and underdispersed data. Additionally, it is able to present count data with long tail. As a result of the problem of unobserved individuals, the zero-truncated Poisson Lindley distribution is considered. The parameter of distribution can be estimated using the maximum likelihood estimation. The Horvitz-Thompson estimator based on the zero-truncated Poisson Lindley distribution for modelling the population size is investigated in this study. Point and interval estimation of the target population are presented. The technique of conditioning is used for variance estimation of the population size. Relative bias, relative variance and relative mean square error are used for measuring the accuracy of the estimator. The simulation results show that the Horvitz-Thompson estimator under the zero-truncated Poisson Lindley distribution provides a good fit when compared to the zero-truncated Poisson distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Böhning, D.: A simple variance formula for population size estimators by conditioning. Stat. Methodol. 5(5), 410–423 (2008). https://doi.org/10.1016/j.stamet.2007.10.001

    Article  MathSciNet  MATH  Google Scholar 

  2. Böhning, D., Suppawattanabodee, B., Kusolvisitkul, W., Viwatwongkasem, C.: Estimating the number of drug users in Bangkok 2001: a capture-recapture approach using repeated entries in one list. Eur. J. Epidemiol. 19(12), 1075–1083 (2004). https://doi.org/10.2307/3583005

    Article  Google Scholar 

  3. Böhning, D.: Ratio plot and ratio regression with applications to social and medical sciences. Stat. Sci. 31(2), 205–218 (2016). https://doi.org/10.1214/16-STS548

    Article  MathSciNet  MATH  Google Scholar 

  4. Bunge, J., Barger, K.: Parametric models for estimating the number of classes. Biometrical J. 50(6), 971–982 (2008). https://doi.org/10.1002/bimj.200810452

    Article  MathSciNet  Google Scholar 

  5. Cruyff, M.J., van der Heijden, P.G.: Point and interval estimation of the population size using a zero-truncated negative binomial regression model. Biometrical J. 50(6), 1035–1050 (2008). https://doi.org/10.1002/bimj.200810455

    Article  MathSciNet  Google Scholar 

  6. Edwards, W.R., Eberhardt, L.: Estimating cottontail abundance from livetrapping data. J. Wildlife Manag. 87–96 (1967). https://doi.org/10.2307/3798362

    Article  Google Scholar 

  7. El-Shaarawi, A.H., Zhu, R., Joe, H.: Modelling species abundance using the Poisson-Tweedie family. Environmetrics 22(2), 152–164 (2011). https://doi.org/10.1002/env.1036

    Article  MathSciNet  Google Scholar 

  8. Fisher, R.A., Corbet, A.S., Williams, C.B.: The relation between the number of species and the number of individuals in a random sample of an animal population. J. Animal Ecol. 42–58 (1943). https://doi.org/10.2307/1411

    Article  Google Scholar 

  9. Ghitany, M., Al-Mutairi, D.K., Nadarajah, S.: Zero-truncated Poisson-Lindley distribution and its application. Math. Comput. Simul. 79(3), 279–287 (2008). https://doi.org/10.1016/j.matcom.2007.11.021

    Article  MathSciNet  MATH  Google Scholar 

  10. van der Heijden, P.G., Bustami, R., Cruyff, M.J., Engbersen, G., van Houwelingen, H.C.: Point and interval estimation of the population size using the truncated Poisson regression model. Stat. Model. 3(4), 3305–322 (2003)

    MathSciNet  MATH  Google Scholar 

  11. van der Heijden, P.G., Cruyff, M.J., Böhning, D.: Capture recapture to estimate criminal populations. In: Encyclopedia of Criminology and Criminal Justice pp. 267–276 (2014). https://doi.org/10.2307/41954244

  12. Hidaka, S.: General type token distribution. Briometrika 101(4), 999–1002 (2014). https://doi.org/10.1093/biomet/asu035

    Article  MathSciNet  MATH  Google Scholar 

  13. Holla, M.: On a Poisson-inverse Gaussian distribution. Metrika 11(1), 115–121 (1967). https://doi.org/10.1007/bf02613581

    Article  MathSciNet  MATH  Google Scholar 

  14. Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47(260), 663–685 (1952). https://doi.org/10.1080/01621459.1952.10483446

    Article  MathSciNet  MATH  Google Scholar 

  15. Mahmoudi, E., Zakerzadeh, H.: Generalized Poisson-Lindley distribution. Commun. Stat.-Theory Methods 39(10), 1785–1798 (2010). https://doi.org/10.1080/03610920902898514

    Article  MathSciNet  MATH  Google Scholar 

  16. Rocchetti, I., Bunge, J., Böhning, D.: Population size estimation based upon ratios of recapture probabilities. Ann. Appl. Stat. 5(2B), 1512–1533 (2011)

    Article  MathSciNet  Google Scholar 

  17. Sankaran, M.: The discrete Poisson-Lindley distribution. Biometrics 145–149 (1970). https://doi.org/10.2307/2529053

    Article  Google Scholar 

  18. Shanker, R., Hagos, F., Sujatha, S., Abrehe, Y.: On zero-truncation of Poisson and Poisson-Lindley distributions and their applications. Biometrics Biostat. Int. J. 2(6), 1–14 (2015)

    Article  Google Scholar 

  19. Zamani, H., Ismail, N., Faroughi, P.: Poisson-weighted exponential univariate version and regression model with applications. J. Math. Stat. 10(2), 148–154 (2014). https://doi.org/10.3844/jmssp.2014.148.154

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by Maejo University, Chiang Mai, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratchaneewan Wongprachan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wongprachan, R. (2020). Modelling Population Size Using Horvitz-Thompson Approach Based on the Zero-Truncated Poisson Lindley Distribution. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40616-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40615-8

  • Online ISBN: 978-3-030-40616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics