Abstract
Congestion games possess the property of emitting at least one pure Nash equilibrium and have a rich history of practical use in transport modelling. In this paper we approach the problem of modelling equilibrium within congestion games using a decentralised multi-player probabilistic approach via stochastic bandit feedback. Restricting the strategies available to players under the assumption of bounded rationality, we explore an online multiplayer exponential weights algorithm for unweighted atomic routing games and compare this with a \(\epsilon \)-greedy algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\((a_i; a_{-i})\) is commonly used to refer to player i’s strategy given the strategy profile \(\mathbf {a}=(a_1,\cdots ,a_i, \cdots ,a_N)\).
- 2.
In general an unweighted traffic rate routes the same quantity \(k_i =k \quad \forall i \in \mathcal {N}\).
- 3.
The source code is available at https://github.com/samtoneill/congestionbanditgames.
References
Belmega, E.V., Mertikopoulos, P., Negrel, R., Sanguinetti, L.: Online convex optimization and no-regret learning: algorithms, guarantees and applications (2018). http://arxiv.org/abs/1804.04529
Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)
Cohen, J., Héliou, A., Mertikopoulos, P.: Learning with bandit feedback in potential games (2017). https://hal.archives-ouvertes.fr/hal-01643352
Gigerenzer, G., Selten, R.: Bounded Rationality: The Adaptive Toolbox. MIT Press, Cambridge (2001)
Patriksson, M.: The Traffic Assignment Problem: Models and Methods. Dover Publications, Mineola (1994)
Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973). https://doi.org/10.1007/BF01737559
Roughgarden, T.: Routing games. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.) Algorithmic Game Theory, pp. 461–486. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511800481.020
Vinitsky, E., et al.: Benchmarks for reinforcement learning in mixed-autonomy traffic. In: Billard, A., Dragan, A., Peters, J., Morimoto, J. (eds.) Proceedings of the 2nd Conference on Robot Learning. Proceedings of Machine Learning Research, vol. 87, pp. 399–409. PMLR (2018). http://proceedings.mlr.press/v87/vinitsky18a.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
O’Neill, S., Bagdasar, O., Liotta, A. (2020). An Online Learning Approach to a Multi-player N-armed Functional Bandit. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-40616-5_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-40615-8
Online ISBN: 978-3-030-40616-5
eBook Packages: Computer ScienceComputer Science (R0)