Skip to main content

An Online Learning Approach to a Multi-player N-armed Functional Bandit

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

Congestion games possess the property of emitting at least one pure Nash equilibrium and have a rich history of practical use in transport modelling. In this paper we approach the problem of modelling equilibrium within congestion games using a decentralised multi-player probabilistic approach via stochastic bandit feedback. Restricting the strategies available to players under the assumption of bounded rationality, we explore an online multiplayer exponential weights algorithm for unweighted atomic routing games and compare this with a \(\epsilon \)-greedy algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \((a_i; a_{-i})\) is commonly used to refer to player i’s strategy given the strategy profile \(\mathbf {a}=(a_1,\cdots ,a_i, \cdots ,a_N)\).

  2. 2.

    In general an unweighted traffic rate routes the same quantity \(k_i =k \quad \forall i \in \mathcal {N}\).

  3. 3.

    The source code is available at https://github.com/samtoneill/congestionbanditgames.

References

  1. Belmega, E.V., Mertikopoulos, P., Negrel, R., Sanguinetti, L.: Online convex optimization and no-regret learning: algorithms, guarantees and applications (2018). http://arxiv.org/abs/1804.04529

  2. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  3. Cohen, J., Héliou, A., Mertikopoulos, P.: Learning with bandit feedback in potential games (2017). https://hal.archives-ouvertes.fr/hal-01643352

  4. Gigerenzer, G., Selten, R.: Bounded Rationality: The Adaptive Toolbox. MIT Press, Cambridge (2001)

    Google Scholar 

  5. Patriksson, M.: The Traffic Assignment Problem: Models and Methods. Dover Publications, Mineola (1994)

    Google Scholar 

  6. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973). https://doi.org/10.1007/BF01737559

    Article  MathSciNet  MATH  Google Scholar 

  7. Roughgarden, T.: Routing games. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.) Algorithmic Game Theory, pp. 461–486. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511800481.020

    Chapter  Google Scholar 

  8. Vinitsky, E., et al.: Benchmarks for reinforcement learning in mixed-autonomy traffic. In: Billard, A., Dragan, A., Peters, J., Morimoto, J. (eds.) Proceedings of the 2nd Conference on Robot Learning. Proceedings of Machine Learning Research, vol. 87, pp. 399–409. PMLR (2018). http://proceedings.mlr.press/v87/vinitsky18a.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam O’Neill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

O’Neill, S., Bagdasar, O., Liotta, A. (2020). An Online Learning Approach to a Multi-player N-armed Functional Bandit. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40616-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40615-8

  • Online ISBN: 978-3-030-40616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics