Abstract
The paper considers global optimization problems with a black-box objective function satisfying the Lipschitz condition. Efficient algorithms for this class of problems require reliable estimates of the Lipschitz constant to be introduced. Various approaches have been proposed to take into account both global and local properties of the objective function. In particular, algorithms using local estimates of the Lipschitz constant have shown their potential. The new approach presented in this paper is based on simultaneous use of two estimates: one is substantially larger than the other. The larger estimate ensures global convergence and the smaller one reduces the total number of trials needed to find the global optimizer. Results of numerical experiments on the random sample of multidimensional functions demonstrate the efficiency of the approach proposed by the authors.
This research was supported by the Russian Science Foundation, project No. 16-11-10150.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on GPU cluster. In: AIP Conference Proceedings, vol. 1738, p. 400006 (2016)
Barkalov, K., Strongin, R.: Solving a set of global optimization problems by the parallel technique with uniform convergence. J. Glob. Optim. 71(1), 21–36 (2018)
Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained optimization. Optim. Lett. 7, 819–829 (2013)
Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001)
Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)
Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making. In: Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 76–88. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45145-7_7
Horst, R., Tuy, H.: Global Optimization - Deterministic Approaches. Springer, Berlin (1996). https://doi.org/10.1007/978-3-662-02598-7
Jones, D., Perttunen, C., Stuckman, B.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)
Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal GO methods. Numer. Math. 94(1), 93–106 (2003)
Lera, D., Sergeyev, Y.D.: An information global minimization algorithm using the local improvement technique. J. Glob. Optim. 48(1), 99–112 (2010)
Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4(2), 173–183 (2010)
Pinter, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996). https://doi.org/10.1007/978-1-4757-2502-5
Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)
Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 99–111 (2015)
Sergeyev, Y.D., Mukhametzhanov, M.S., Kvasov, D.E., Lera, D.: Derivative-free local tuning and local improvement techniques embedded in the univariate global optimization. J. Optim. Theory Appl. 171(1), 186–208 (2016)
Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer Briefs in Optimization. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8042-6
Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints. Sequential and parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). https://doi.org/10.1007/978-1-4615-4677-1
Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Strongin, R., Barkalov, K., Bevzuk, S. (2020). Acceleration of Global Search by Implementing Dual Estimates for Lipschitz Constant. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_46
Download citation
DOI: https://doi.org/10.1007/978-3-030-40616-5_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-40615-8
Online ISBN: 978-3-030-40616-5
eBook Packages: Computer ScienceComputer Science (R0)