Skip to main content

Acceleration of Global Search by Implementing Dual Estimates for Lipschitz Constant

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

The paper considers global optimization problems with a black-box objective function satisfying the Lipschitz condition. Efficient algorithms for this class of problems require reliable estimates of the Lipschitz constant to be introduced. Various approaches have been proposed to take into account both global and local properties of the objective function. In particular, algorithms using local estimates of the Lipschitz constant have shown their potential. The new approach presented in this paper is based on simultaneous use of two estimates: one is substantially larger than the other. The larger estimate ensures global convergence and the smaller one reduces the total number of trials needed to find the global optimizer. Results of numerical experiments on the random sample of multidimensional functions demonstrate the efficiency of the approach proposed by the authors.

This research was supported by the Russian Science Foundation, project No. 16-11-10150.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on GPU cluster. In: AIP Conference Proceedings, vol. 1738, p. 400006 (2016)

    Google Scholar 

  2. Barkalov, K., Strongin, R.: Solving a set of global optimization problems by the parallel technique with uniform convergence. J. Glob. Optim. 71(1), 21–36 (2018)

    Article  MathSciNet  Google Scholar 

  3. Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained optimization. Optim. Lett. 7, 819–829 (2013)

    Article  MathSciNet  Google Scholar 

  4. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001)

    Article  MathSciNet  Google Scholar 

  5. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

    Article  MathSciNet  Google Scholar 

  6. Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making. In: Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 76–88. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45145-7_7

    Chapter  Google Scholar 

  7. Horst, R., Tuy, H.: Global Optimization - Deterministic Approaches. Springer, Berlin (1996). https://doi.org/10.1007/978-3-662-02598-7

    Book  MATH  Google Scholar 

  8. Jones, D., Perttunen, C., Stuckman, B.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  Google Scholar 

  9. Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal GO methods. Numer. Math. 94(1), 93–106 (2003)

    Article  MathSciNet  Google Scholar 

  10. Lera, D., Sergeyev, Y.D.: An information global minimization algorithm using the local improvement technique. J. Glob. Optim. 48(1), 99–112 (2010)

    Article  MathSciNet  Google Scholar 

  11. Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4(2), 173–183 (2010)

    Article  MathSciNet  Google Scholar 

  12. Pinter, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996). https://doi.org/10.1007/978-1-4757-2502-5

    Book  MATH  Google Scholar 

  13. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

    Article  MathSciNet  Google Scholar 

  14. Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 99–111 (2015)

    Article  MathSciNet  Google Scholar 

  15. Sergeyev, Y.D., Mukhametzhanov, M.S., Kvasov, D.E., Lera, D.: Derivative-free local tuning and local improvement techniques embedded in the univariate global optimization. J. Optim. Theory Appl. 171(1), 186–208 (2016)

    Article  MathSciNet  Google Scholar 

  16. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer Briefs in Optimization. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8042-6

    Book  MATH  Google Scholar 

  17. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints. Sequential and parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). https://doi.org/10.1007/978-1-4615-4677-1

    Book  MATH  Google Scholar 

  18. Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Barkalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Strongin, R., Barkalov, K., Bevzuk, S. (2020). Acceleration of Global Search by Implementing Dual Estimates for Lipschitz Constant. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40616-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40615-8

  • Online ISBN: 978-3-030-40616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics