Abstract
Properties of operators of generalized attenuated ray transforms (ART) are investigated. Starting with Radon transform in the mathematical model of computer tomography, attenuated ray transform in emission tomography and longitudinal ray transform in tensor tomography, we come to the operators of ART of order k over symmetric m-tensor fields, depending on spatial and temporal variables. The operators of ART of order k over tensor fields contain complex-valued absorption, different weights, and depend on time. Connections between ART of various orders are established by means of application of linear part of transport equation. This connections lead to the inhomogeneous k-th order differential equations for the ART of order k over symmetric m-tensor field. The right hand parts of such equations are m-homogeneous polynomials containing the components of the tensor field as the coefficients. The polynomial variables are the components \(\xi ^j\) of direction vector \(\xi \) participating in differential part of transport equation. Uniqueness theorems of boundary-value and initial boundary-value problems for the obtained equations are proved, with significant application of Gauss-Ostrogradsky theorem. The connections of specified operators with integral geometry of tensor fields, emission tomography, photometry and wave optics allow to treat the problem of inversion of the ART of order k as the inverse problem of determining the right hand part of certain differential equation.
The reported study was funded by Russian Foundation for Basic Research (RFBR) and German Science Foundation (DFG) according to the joint German-Russian research project 19-51-12008 and by German Science Foundation (DFG) under project Lo 310/17-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Budinger, T., Gullberg, G., Huesman, R.: Emission computed tomography. In: Herman, G. (ed.) Image Reconstruction from Projections: Implementation and Applications, pp. 147–246. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09417-2_5
Natterer, F.: The Mathematics of Computerized Tomography. Wiley, Chichester (1986)
Natterer, F.: Inverting the attenuated vectorial Radon transform. J. Inverse Ill Posed Probl. 13(1), 93–101 (2005). https://doi.org/10.1515/1569394053583720
Kazantsev, S., Bukhgeim, A.: Inversion of the scalar and vector attenuated X-ray transforms in a unit disc. J. Inverse Ill Posed Probl. 15(7), 735–765 (2007). https://doi.org/10.1515/jiip.2007.040
Tamasan, A.: Tomographic reconstruction of vector fields in variable background media. Inverse Probl. 23(5), 2197–2205 (2007). https://doi.org/10.1088/0266-5611/23/5/022
Ainsworth, G.: The attenuated magnetic ray transform on surfaces. Inverse Probl. Imaging 7(1), 27–46 (2013). https://doi.org/10.3934/ipi.2013.7.27
Sadiq, K., Tamasan, A.: On the range characterization of the two-dimensional attenuated doppler transform. SIAM J. Math. Anal. 47(3), 2001–2021 (2015). https://doi.org/10.1137/140984282
Monard, F.: Inversion of the attenuated geodesic X-ray transform over functions and vector fields on simple surfaces. SIAM J. Math. Anal. 48(2), 1155–1177 (2016). https://doi.org/10.1137/15M1016412
Aben, H., Puro, A.: Photoelastic tomography for three-dimensional flow birefringence studies. Inverse Probl. 13(2), 215–221 (1997). https://doi.org/10.1088/0266-5611/13/2/002
Ainola, L., Aben, H.: Principal formulas of integrated photoelasticity of characteristic parameters. J. Opt. Soc. Am. A 22(6), 1181–1186 (2005). https://doi.org/10.1364/JOSAA.22.001181
Lionheart, W.R.B., Withers, P.J.: Diffraction tomography of strain. Inverse Probl. 31(4), 045005 (2015). https://doi.org/10.1088/0266-5611/31/4/045005
Karassiov, V.P.: Polarization tomography of quantum radiation: theoretical aspects and operator approach. Theor. Math. Phys. 145(3), 1666–1677 (2005). https://doi.org/10.1007/s11232-005-0189-4
Panin, V.Y., Zeng, G.L., Defrise, M., Gullberg, G.T.: Diffusion tensor MR imaging of principal directions: a tensor tomography approach. Phys. Med. Biol. 47(15), 2737–2757 (2002). https://doi.org/10.1088/0031-9155/47/15/314
Schmitt, J.M., Xiang, S.H.: Cross-polarized backscatter in optical coherence tomography of biological tissue. Opt. Lett. 23(13), 1060–1062 (1998). https://doi.org/10.1364/OL.23.001060
Kuranov, R.V., Sapozhnikova, V.V., et al.: Complementary use of cross-polarization and standard OCT for differential diagnosis of pathological tissues. Opt. Express 10(15), 707–713 (2002). https://doi.org/10.1364/OE.10.000707
Gelikonov, V.M., Gelikonov, G.V.: New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes. Laser Phys. Lett. 3(9), 445–451 (2006). https://doi.org/10.1002/lapl.200610030
Sharafutdinov, V.: A problem of integral geometry for generalized tensor fields on \(R^n\). Sov. Math. Dokl. 33(1), 100–102 (1986)
Sharafutdinov, V.: Integral Geometry of Tensor Fields. VSP, Utrecht (1994)
Derevtsov, E.Yu., Polyakova, A.P.: Solution of the integral geometry problem for 2-tensor fields by the singular value decomposition method. J. Math. Sci. 202(1), 50–71 (2014). https://doi.org/10.1007/s10958-014-2033-6
Svetov, I.E., Derevtsov, E.Yu., Volkov, Yu.S, Schuster, T.: A numerical solver based on B-splines for 2D vector field tomography in a refracting medium. Math. Comput. Simul. 97, 207–223 (2014). https://doi.org/10.1016/j.matcom.2013.10.002
Derevtsov, E., Svetov, I.: Tomography of tensor fields in the plane. Eurasian J. Math. Comput. Appl. 3(2), 24–68 (2015)
Derevtsov, E.Yu., Maltseva, S.V.: Reconstruction of the singular support of a tensor field given in a refracting medium by its ray transform. J. Appl. Ind. Math. 9(4), 447–460 (2015). https://doi.org/10.1134/S1990478915040018
Monard, F.: Efficient tensor tomography in fan-beam coordinates. Inverse Probl. Imaging 10(2), 433–459 (2016). https://doi.org/10.3934/ipi.2016007
Monard, F.: Efficient tensor tomography in fan-beam coordinates. II: attenuated transforms. Inverse Probl. Imaging 12(2), 433–460 (2018). https://doi.org/10.3934/ipi.2018019
Mueller, R.K., Kaveh, M., Wade, G.: Reconstructive tomography and applications to ultrasonic. Proc. IEEE 67(4), 567–587 (1979). https://doi.org/10.1109/PROC.1979.11284
Ball, J., Johnson, S.A., Stenger, F.: Explicit inversion of the Helmholtz equation for ultrasound insonification and spherical detection. In: Wang, K. (ed.) Acoustical Imaging, vol. 9. Springer, Boston (1980). https://doi.org/10.1007/978-1-4684-3755-3_26
Schmitt, U., Louis, A.K.: Efficient algorithms for the regularization of dynamic inverse problems: I. Theory. Inverse Probl. 18(3), 645–658 (2002). https://doi.org/10.1088/0266-5611/18/3/308
Schmitt, U., Louis, A.K., Wolters, C., Vauhkonen, M.: Efficient algorithms for the regularization of dynamic inverse problems: II. Applications. Inverse Probl. 18(3), 659–676 (2002). https://doi.org/10.1088/0266-5611/18/3/309
Hahn, B., Louis, A.K.: Reconstruction in the three-dimensional parallel scanning geometry with application in synchrotron-based X-ray tomography. Inverse Probl. 28(4), 045013 (2012). https://doi.org/10.1088/0266-5611/28/4/045013
Kireitov, V.R.: On the problem of determining an optical surface by its reflections. Funct. Anal. Appl. 10(3), 201–209 (1976). https://doi.org/10.1007/BF01075526
Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999)
Goodman, J.: Introduction to Fourier optics. McGraw-Hill Book Company, New York (1968)
Kireitov, V.R.: Inverse Problems of the Photometry. Computing Center of the USSR Acad. Sci., Novosibirsk (1983). (in Russian)
Case, K., Zweifel, P.: Linear Transport Theory. Addison-Wesley Publishing Company, Boston (1967)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Derevtsov, E.Y., Volkov, Y.S., Schuster, T. (2020). Differential Equations and Uniqueness Theorems for the Generalized Attenuated Ray Transforms of Tensor Fields. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-40616-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-40615-8
Online ISBN: 978-3-030-40616-5
eBook Packages: Computer ScienceComputer Science (R0)