Skip to main content

Construction of a WBGT Index Meter Using Low Cost Devices

  • Conference paper
  • First Online:
Information Technology and Systems (ICITS 2020)

Abstract

Appropriate working conditions can improve the working performance of an employee on a company, one of the main concerns nowadays is the thermal stress, due to the affection not only to the productivity of an employee but also for the risk of affections to his health, in this sense, WBGT (Wet-Bulb Globe Temperature) index is widely proved to define thermal discomfort and thermal stress but in some cases is out of reach due to its cost or availability on a certain region of the world, so this work explains the construction of a low cost device WBGT meter built by an Arduino pro mini, three lm35 temperature sensors and an LCD to install the electronic system; Globe temperature and wet bulb temperature was achieved using a matte black sphere and moistened fabric, respectively. After testing the dispositive, the collected information was sent to a computer through serial communication for further analysis which showed acceptable errors on the measurement of the WBGT index taken indoors and outdoors thru the device and compared to the data obtained by a commercial WBGT meter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agüero, M.R., Bethencourt, J.B., Ramírez, R., García, Y.M.: Caracterización del ambiente térmico laboral y su relación con la salud de los trabajadores expuestos. Rev. Cuba. Salud y Trab. 16, 3–9 (2015)

    Google Scholar 

  2. Cheng, Y.T., Lung, S.C.C., Hwang, J.S.: New approach to identifying proper thresholds for a heat warning system using health risk increments. Environ. Res. 170, 282–292 (2019). https://doi.org/10.1016/j.envres.2018.12.059

    Article  Google Scholar 

  3. Deschenes, O.: Temperature, human health, and adaptation: a review of the empirical literature. Energy Econ. 46, 606–619 (2014). https://doi.org/10.1016/j.eneco.2013.10.013

    Article  Google Scholar 

  4. Lan, L., Wargocki, P., Wyon, D.P., Lian, Z.: Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor Air 21, 376–390 (2011). https://doi.org/10.1111/j.1600-0668.2011.00714.x

    Article  Google Scholar 

  5. Castilla, M.M., Álvarez, J.D., Berenguel, M., Pérez, M., Rodríguez, F., Guzmán, J.L.: Técnicas de Control del Confort en Edificios. Rev. Iberoam. automática e informática Ind. 7, 5–24 (2010). https://doi.org/10.4995/RIAI.2010.03.01

    Article  Google Scholar 

  6. Jackson, L.L., Rosenberg, H.R.: Preventing heat-related illness among agricultural workers. J. Agromedicine 15, 200–215 (2010). https://doi.org/10.1080/1059924X.2010.487021

    Article  Google Scholar 

  7. Arias Gallegos, W.L.: Estrés laboral en trabajadores desde el enfoque de los sucesos vitales Occupational stress of workers analyzed from an approach to vital events. Rev. Cuba. Salud Pública. 38, 525–535 (2012)

    Article  Google Scholar 

  8. Jay, O., Brotherhood, J.R.: Occupational heat stress in Australian workplaces. Temperature 3, 394–411 (2016). https://doi.org/10.1080/23328940.2016.1216256

    Article  Google Scholar 

  9. Spector, J.T., Krenz, J., Blank, K.N.: Risk factors for heat-related illness in washington crop workers. J. Agromedicine. 20, 349–359 (2015). https://doi.org/10.1080/1059924X.2015.1047107

    Article  Google Scholar 

  10. Moran, D.S., Pandolf, K.B., Shapiro, Y., Heled, Y., Shani, Y., Mathew, W.T., Gonzalez, R.R.: An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT). J. Therm. Biol. 26, 427–431 (2001). https://doi.org/10.1016/S0306-4565(01)00055-9

    Article  Google Scholar 

  11. Golbabaei, F., Heidari, H., Shamsipour, A., Forushani, A.R., Gaeini, A.: A new outdoor environmental heat index (OEHI) as a simple and applicable heat stress index for evaluation of outdoor workers. Urban Clim. 29, 100479 (2019). https://doi.org/10.1016/j.uclim.2019.100479

    Article  Google Scholar 

  12. Zare, S., Shirvan, H.E., Hemmatjo, R., Nadri, F., Jahani, Y., Jamshidzadeh, K., Paydar, P.: A comparison of the correlation between heat stress indices (UTCI, WBGT, WBDT, TSI) and physiological parameters of workers in Iran. Weather Clim. Extremes 26, 100213 (2019). https://doi.org/10.1016/j.wace.2019.100213

    Article  Google Scholar 

  13. Brotherhood, J.: What does the WBGT Index tell us: is it a useful index of environmental heat stress? J. Sci. Med. Sport 18, e60 (2014). https://doi.org/10.1016/j.jsams.2014.11.281

    Article  Google Scholar 

  14. D’Ambrosio Alfano, F.R., Malchaire, J., Palella, B.I., Riccio, G.: WBGT index revisited after 60 years of use. Ann. Occup. Hyg. 58, 955–970 (2014). https://doi.org/10.1093/annhyg/meu050

    Article  Google Scholar 

  15. Budd, G.M.: Wet-bulb globe temperature (WBGT)-its history and its limitations. J. Sci. Med. Sport 11, 20–32 (2008). https://doi.org/10.1016/j.jsams.2007.07.003

    Article  Google Scholar 

  16. Saá, F., Varela-Aldás, J., Latorre, F., Ruales, B.: Automation of the feeding system for washing vehicles using low cost devices. In: Advances in Intelligent Systems and Computing, pp. 131–141 (2020). https://doi.org/10.1007/978-3-030-32033-1_13

    Google Scholar 

  17. Ramirez, B.C., Gao, Y., Hoff, S.J., Harmon, J.D.: Thermal environment sensor array: part 1 development and field performance assessment. Biosyst. Eng. 174, 329–340 (2018). https://doi.org/10.1016/j.biosystemseng.2018.08.002

    Article  Google Scholar 

  18. Yantek, D.S., Yan, L., Damiano, N.W., Reyes, M.A., Srednicki, J.R.: A test method for evaluating the thermal environment of underground coal mine refuge alternatives. Int. J. Min. Sci. Technol. 29, 343–355 (2019). https://doi.org/10.1016/j.ijmst.2019.01.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Varela-Aldás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varela-Aldás, J., Fuentes, E.M., Ruales, B., Ichina, C. (2020). Construction of a WBGT Index Meter Using Low Cost Devices. In: Rocha, Á., Ferrás, C., Montenegro Marin, C., Medina García, V. (eds) Information Technology and Systems. ICITS 2020. Advances in Intelligent Systems and Computing, vol 1137. Springer, Cham. https://doi.org/10.1007/978-3-030-40690-5_45

Download citation

Publish with us

Policies and ethics