Skip to main content

Exploring Breast Cancer Prediction for Cuban Women

  • Conference paper
  • First Online:
Information Technology and Systems (ICITS 2020)

Abstract

The importance of early detection of breast cancer in the healthcare field has led to the generation of various models for estimating the risk of suffering from it. This paper analyzes the effectiveness of the official model used in the United States for this purpose, known as the Gail model, on a set of cases of Cuban native women. Despite the fact that the version of the model used considers the estimation of risk for Hispanic women born in the United States, certain limitations were found in the results, so the use of computational models based on machine learning applied to the same set of cases is explored as an alternative. The results show that, for the analyzed cases, better results are obtained using some machine learning algorithms, which gives rise to a greater exploration of these as an alternative to traditional models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://bcrisktool.cancer.gov/about.html.

References

  1. Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D.M., Piñeros, M., Znaor, A., Bray, F.: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 144(8), 1941–1953 (2019). https://doi.org/10.1002/ijc.31937. PMID: 30350310

    Article  Google Scholar 

  2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492. PMID: 30207593

    Article  Google Scholar 

  3. American Cancer Society: Cancer Facts & Figures 2019. American Cancer Society, Atlanta (2019)

    Google Scholar 

  4. Agarwal, G., Ramakant, P., Forgach, E.R., Rendón, J.C., Chaparro, J.M., Basurto, C.S., Margaritoni, M.: Breast cancer care in developing countries. World J. Surg. 2069–2076 (2009). https://doi.org/10.1007/s00268-009-0150-z

    Article  Google Scholar 

  5. Anderson, B.O., Braun, S., Lim, S., Smith, R.A., Taplin, S., Thomas, D.B.: Early detection of breast cancer in countries with limited resources. Breast J. 9(Suppl 2), S51–S59 (2003). Global Summit Early Detection Panel

    Article  Google Scholar 

  6. Smith, R.A., Caleffi, M., Albert, U.S., Chen, T.H.H., Duffy, S.W., Franceschi, D., Nyström, L.: Breast cancer in limited-resource countries: early detection and access to care. Breast J. 12, S16–S26 (2006). https://doi.org/10.1111/j.1075-122X.2006.00200.x

    Article  Google Scholar 

  7. Gail, M., Brinton, L., Byar, D., Corle, D., Green, S., Shairer, C., Mulvihill, J.: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J. Natl. Cancer Inst. 81(24), 1879–1886 (1989). https://doi.org/10.1093/jnci/81.24.1879

    Article  Google Scholar 

  8. Costantino, J.P., Gail, M.H., Pee, D., Anderson, S., Redmond, C.K., Benichou, J., Samuel Wieand, H.: Validation studies for models projecting the risk of invasive and total breast cancer incidence. JNCI: J. Natl. Cancer Inst. 91(18), 1541–1548 (1999). https://doi.org/10.1093/jnci/91.18.1541

    Article  Google Scholar 

  9. Gail, M., Costantino, J., Pee, D., Bondy, M., Newman, L., Selvan, M., Anderson, G., Malone, K., Marchbanks, P., McCaskill-Stevens, W., Norman, S., Simon, M., Spirtas, R., Ursin, G., Bernstein, L.: Projecting individualized absolute invasive breast cancer risk in African American women. J. Natl. Cancer Inst. 99(23), 1782–1792 (2007). https://doi.org/10.1093/jnci/djm223

    Article  Google Scholar 

  10. Matsuno, R., Costantino, J., Ziegler, R., Anderson, G., Li, H., Pee, D., Gail, M.: Projecting individualized absolute invasive breast cancer risk in Asian and Pacific Islander American women. J. Natl. Cancer Inst. 103(12), 951–961 (2011). https://doi.org/10.1093/jnci/djr154

    Article  Google Scholar 

  11. Banegas, M., John, E., Slattery, M., Gomez, S., Yu, M., LaCroix, A., Rowan, D., Hines, C., Thompson, C., Gail, M.: Projecting individualized absolute invasive breast cancer risk in US Hispanic women. J. Natl. Cancer Inst. 109(2) (2017). https://doi.org/10.1093/jnci/djw215

    Article  Google Scholar 

  12. Park, B., Ma, S.H., Shin, A., Chang, M.-C., Choi, J.-Y., et al.: Korean risk assessment model for breast cancer risk prediction. PLoS ONE 8(10), e76736 (2013). https://doi.org/10.1371/journal.pone.0076736

    Article  Google Scholar 

  13. Claus, E.B., Risch, N., Douglas Thompson, W.: Genetic analysis of breast cancer in the cancer and steroid hormone study. Am. J. Hum. Genet. 48(2), 232–242 (1991). PMID: 1990835

    Google Scholar 

  14. Parmigiani, G., Berry, D., Aguilar, O.: Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am. J. Hum. Genet. 62, 145–158 (1998). https://doi.org/10.1086/301670

    Article  Google Scholar 

  15. Jonker, M.A., Jacobi, C.E., Hoogendoorn, W.E., Nagelkerke, N.J.D., de Bock, G.H., van Houwelingen, J.C.: Modeling familial clustered breast cancer using published data. Cancer Epidemiol. Biomark. Prev. 12(12), 1479–1485 (2003)

    Google Scholar 

  16. Tyrer, J., Duffy, S., Cuzick, J.: A breast cancer prediction model incorporating familial and personal risk factors. Stat. Med. 23(7), 1111–1130 (2004). https://doi.org/10.1002/sim.1668

    Article  Google Scholar 

  17. Antoniou, A., Pharoah, P., Smith, P., Easton, D.: The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br. J. Cancer 91(8), 1580–1590 (2004). https://doi.org/10.1038/sj.bjc.6602175

    Article  Google Scholar 

  18. Narod, S.A.: Screening for BRCA1 and BRCA2 mutations in breast cancer patients from Mexico: the public health perspective. Salud Publica de México 51(supp 2), s191–s196 (2009). PMID: 19967274

    Article  Google Scholar 

  19. Hidalgo-Miranda, A., Jiménez-Sánchez, G.: Bases genómicas del cáncer de mama: avances hacia la medicina personalizada. Salud Pública de México 51(supp 2), s197–s207 (2009)

    Article  Google Scholar 

  20. Fejerman, L., John, E.M., Huntsman, S., Beckman, K., Choudhry, S., Perez-Stable, E., Burchard, E.G., Ziv, E.: Genetic ancestry and risk of breast cancer among U.S. Latinas. Cancer Res. 68(23), 9723–9728 (2008). PMID: 19047150

    Article  Google Scholar 

  21. McPherson, K., Steel, C.M., Dixon, J.M.: ABC of breast diseases: breast cancer—epidemiology, risk factors, and genetics 321, 624 (2000). https://doi.org/10.1136/bmj.321.7261.624

    Article  Google Scholar 

  22. Rodríguez Cuevas, S.A., García, M.C.: Epidemiología del cáncer de mama. Ginecología y Obstetricia de México 74(11), 585–593 (2006)

    Google Scholar 

  23. Amir, E., Freedman, O.C., Seruga, B., Evans, D.G.: Assessing women at high risk of breast cancer: a review of risk assessment models. J. Natl. Cancer Inst. 102(10), 680–691 (2010). https://doi.org/10.1093/jnci/djq088

    Article  Google Scholar 

  24. Wang, X., Huang, Y., Li, L., Dai, H., Song, F., Chen, K.: Assessment of performance of the Gail model for predicting breast cancer risk: a systematic review and meta-analysis with trial sequential analysis. Breast Cancer Res. 20(1), 18 (2018). https://doi.org/10.1186/s13058-018-0947-5

    Article  Google Scholar 

  25. Spiegelman, D., Colditz, G.A., Hunter, D., Hertzmark, E.: Validation of the Gail et al. model for predicting individual breast cancer risk. J. Natl. Cancer Inst. 86(8), 60060–60067 (1994)

    Article  Google Scholar 

  26. Eva Singletary, S.: Rating the risk factors for breast cancer. Ann. Surg. 237(4), 474–482 (2003). PMC1514477

    Google Scholar 

  27. Climente, I.P.P., Morales-Suárez-Varela, M.M., González, A.L., Magraner-Gil, J.F.: Aplicación del método de Gail de cálculo de riesgo de cáncer de mama a la población valenciana. Clin. Transl. Oncol. 7(8), 336–343 (2004)

    Article  Google Scholar 

  28. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Special thanks to RapidMiner© team for providing an Educational Licence Program version of their software for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Valencia-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valencia-Moreno, J.M., López, E.G., Pérez, J.F.R., Rodríguez, J.P.F., Xochihua, O.Á. (2020). Exploring Breast Cancer Prediction for Cuban Women. In: Rocha, Á., Ferrás, C., Montenegro Marin, C., Medina García, V. (eds) Information Technology and Systems. ICITS 2020. Advances in Intelligent Systems and Computing, vol 1137. Springer, Cham. https://doi.org/10.1007/978-3-030-40690-5_47

Download citation

Publish with us

Policies and ethics