Abstract
The recent advances in Artificial Intelligence and Deep Learning are widely used in real-world applications. Enterprises create multiple corpora and use them to train machine learning models for various applications. As the adoption becomes more widespread, it raises further concerns in areas such as maintenance, governance and reusability. This paper will explore the ways to leverage ontologies for these tasks in Natural Language Processing. Specifically, we explore the usage of ontologies as a schema, configuration and output format. The approach described in the paper are based on our experience in a number of projects for medical, enterprise and national security domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Arp, R., Smith, B., Spear, A.D.: Building Ontologies with Basic Formal Ontology. The MIT Press, Cambridge (2015)
Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: Proceedings of the 17th International Conference on Computational Linguistics - Volume 1, COLING 1998, pp. 86–90. Association for Computational Linguistics, Stroudsburg (1998). https://doi.org/10.3115/980451.980860
Batra, S., Sachdeva, S., Bhalla, S.: Entity attribute value style modeling approach for archetype based data. Information 9, 2 (2017)
Bennett, M.: The financial industry business ontology: best practice for big data. J. Bank. Regul. 14(3–4), 255–268 (2013)
Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation, World Wide Web Consortium (2004). http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
Chen, P.P.: The entity-relationship model - toward a unified view of data. ACM Trans. Database Syst. 1(1), 9–36 (1976)
Demey, Y.T.: Adapting the fact-based modeling approach in requirement engineering. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8842, pp. 65–69. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45550-0_9
Ferrucci, D., Lally, A., Verspoor, K., Nyberg, E.: Unstructured information management architecture (UIMA) version 1.0. OASIS Standard (2009). https://docs.oasis-open.org/uima/v1.0/uima-v1.0.html
Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using linked data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, pp. 98–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_7
Hills, T.: NoSQL and SQL Data Modeling: Bringing Together Data, Semantics, and Software, 10, vol. 4, 1st edn. Technics Publications, Basking Ridge (2016)
Martinez-Rodriguez, J.L., Hogan, A., Lopez-Arevalo, I.: Information extraction meets the semantic web: a survey. Semantic Web, pp. 1–81, October 2018. https://doi.org/10.3233/SW-180333
Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems - Volume 2001. pp. 2–9. FOIS 2001. ACM, New York (2001). https://doi.org/10.1145/505168.505170
Noy, N.F., Mcguinness, D.L.: Ontology development 101: a guide to creating your first ontology. Technical report (2001)
Publio, G.C., et al.: ML-Schema: exposing the semantics of machine learning with schemas and ontologies. CoRR abs/1807.05351 (2018). http://arxiv.org/abs/1807.05351
Rak, R., Ananiadou, S.: Making UIMA truly interoperable with SPARQL. In: Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, pp. 89–97. Association for Computational Linguistics, Sofia, August 2013. https://www.aclweb.org/anthology/W13-2311
Sackett, D.L., Richardson, W.S., Rosenberg, W., Haynes, R.B.: How to Practice and Teach Evidence-Based Medicine, pp. 118–128. Churchill Livingstone, New York (1997)
Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., Tsujii, J.: BRAT: a web-based tool for NLP-assisted text annotation. In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2012, pp. 102–107, Association for Computational Linguistics, Stroudsburg (2012). http://dl.acm.org/citation.cfm?id=2380921.2380942
Tarasov, V., Seigerroth, U., Sandkuhl, K.: Ontology development strategies in industrial contexts. In: Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 339, pp. 156–167. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04849-5_14
Troncy, R., Bruemmer, M.: Nerd meets NIF: Lifting NLP extraction results to the linked data cloud. In: Proceedings of the 5th International Workshop on Linked Data on the Web, LDOW 2012 (2012)
Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowl. Eng. Rev. 11(2), 93–136 (1996). https://doi.org/10.1017/S0269888900007797
Wongthongtham, P., Kasisopha, N., Chang, E., Dillon, T.: A software engineering ontology as software engineering knowledge representation. In: 2008 Third International Conference on Convergence and Hybrid Information Technology. vol. 2, pp. 668–675, November 2008. https://doi.org/10.1109/ICCIT.2008.301
Ziad, H., McCrae, J.P., Buitelaar, P.: Teanga: a linked data based platform for natural language processing. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC 2018. European Languages Resources Association (ELRA), Miyazaki, Japan, May 2018. https://www.aclweb.org/anthology/L18-1383
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Erekhinskaya, T., Morris, M., Strebkov, D., Moldovan, D. (2020). Leveraging Ontologies for Natural Language Processing in Enterprise Applications. In: Debruyne, C., et al. On the Move to Meaningful Internet Systems: OTM 2019 Workshops. OTM 2019. Lecture Notes in Computer Science(), vol 11878. Springer, Cham. https://doi.org/10.1007/978-3-030-40907-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-40907-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-40906-7
Online ISBN: 978-3-030-40907-4
eBook Packages: Computer ScienceComputer Science (R0)