Skip to main content

LizarMong: Excellent Key Encapsulation Mechanism Based on RLWE and RLWR

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2019 (ICISC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11975))

Included in the following conference series:

  • 864 Accesses

Abstract

The RLWE family algorithms submitted to the NIST post-quantum cryptography standardization process have each merit in terms of security, correctness, performance, and bandwidth. However, there is no splendid algorithm in all respects. Besides, various recent studies have been published that affect security and correctness, such as side-channel attacks and error dependencies. To date, though, no algorithm has fully considered all the aspects. We propose a novel Key Encapsulation Mechanism scheme called LizarMong, which is based on RLizard. LizarMong combines the merit of each algorithm and state-of-the-art studies. As a result, it achieves up to 85% smaller bandwidth and 3.3 times faster performance compared to RLizard. Compared to the NIST’s candidate algorithms with a similar security, the bandwidth is about 5–42% smaller, and the performance is about 1.2-4.1 times faster. Also, our scheme resists the known side-channel attacks.

J. Lee, Y. Ju and Y.-B. Kwon—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ring-LWE (RLWE), Ring-Learning With Rounding (RLWR), Module-LWE (MLWE), Module-LWR (MLWR), Integer-MLWE (I-MLWE).

References

  1. Akleylek, S., Alkım, E., Tok, Z.Y.: Sparse polynomial multiplication for lattice-based cryptography with small complexity. J. Supercomput. 72(2), 438–450 (2016)

    Article  Google Scholar 

  2. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_11

    Chapter  Google Scholar 

  3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

    Article  MathSciNet  Google Scholar 

  4. Albrecht, M.: A sage module for estimating the concrete security of learning with errors instances (2017)

    Google Scholar 

  5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope. In: 25th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 16), pp. 327–343 (2016)

    Google Scholar 

  6. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35

    Chapter  Google Scholar 

  7. Aysu, A., Tobah, Y., Tiwari, M., Gerstlauer, A., Orshansky, M.: Horizontal side-channel vulnerabilities of post-quantum key exchange protocols. In: 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 81–88. IEEE (2018)

    Google Scholar 

  8. Baan, H., et al.: Round5: Compact and fast post-quantum public-key encryption. IACR Cryptology ePrint Arch. 2019/90 (2019)

    Google Scholar 

  9. Bos, J., et al.: CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–367. IEEE (2018)

    Google Scholar 

  10. Bos, J.W., Friedberger, S., Martinoli, M., Oswald, E., Stam, M.: Assessing the feasibility of single trace power analysis of Frodo. In: Cid, C., Jacobson, M. (eds.) SAC 2019. LNCS, vol. 11349, pp. 216–234. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7_10

    Chapter  Google Scholar 

  11. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload – a cache attack on the bliss lattice-based signature scheme. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_16

    Chapter  MATH  Google Scholar 

  12. Chen, L., et al.: Report on post-quantum cryptography. US Department of Commerce, National Institute of Standards and Technology (2016)

    Google Scholar 

  13. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: cut off the tail! Practical post-quantum public-key encryption from LWE and LWR. Cryptology ePrint Archive, Report 2016/1126 (2016). https://eprint.iacr.org/2016/1126

  14. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard public key encryption. Technical report, National Institute of Standards and Technology, 2017 (2018)

    Google Scholar 

  15. D\(^{\prime }\)Anvers, J.P., Vercauteren, F., Verbauwhede, I.: On the impact of decryption failures on the security of LWE/LWR based schemes. Cryptology ePrint Archive, Report 2018/1089 (2018). https://eprint.iacr.org/2018/1089

  16. D’Anvers, J.-P., Vercauteren, F., Verbauwhede, I.: The impact of error dependencies on Ring/Mod-LWE/LWR based schemes. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 103–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_6

    Chapter  Google Scholar 

  17. Espitau, T., Fouque, P.A., Gerard, B., Tibouchi, M.: Loop-abort faults on lattice-based signature schemes and key exchange protocols. IEEE Trans. Comput. 67(11), 1535–1549 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    Chapter  MATH  Google Scholar 

  19. Howe, J., Khalid, A., Martinoli, M., Regazzoni, F., Oswald, E.: Fault attack countermeasures for error samplers in lattice-based cryptography. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2019)

    Google Scholar 

  20. Huang, W.L., Chen, J.P., Yang, B.Y.: Correlation power analysis on NTRU prime and related countermeasures. IACR Cryptology ePrint Archive 2019/100 (2019)

    Google Scholar 

  21. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsulation mechanism in the quantum random oracle model, revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_4

    Chapter  Google Scholar 

  22. Kim, S., Hong, S.: Single trace analysis on constant time CDT sampler and its countermeasure. Appl. Sci. 8(10), 1809 (2018)

    Article  Google Scholar 

  23. Lee, J., Kim, D., Lee, H., Lee, Y., Cheon, J.H.: RLizard: post-quantum key encapsulation mechanism for IoT devices. IEEE Access 7, 2080–2091 (2018)

    Article  Google Scholar 

  24. Lu, X., et al.: LAC: practical ring-LWE based public-key encryption with byte-level modulus. IACR Cryptology ePrint Archive 2018/1009 (2018)

    Google Scholar 

  25. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-secure and masked ring-LWE implementation. IACR Trans. Crypt. Hardware Embed. Syst. 142–174 (2018)

    Google Scholar 

  26. Park, A., Han, D.G.: Chosen ciphertext simple power analysis on software 8-bit implementation of ring-LWE encryption. In: 2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST), pp. 1–6. IEEE (2016)

    Google Scholar 

  27. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE for any ring and modulus. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 461–473. ACM (2017)

    Google Scholar 

  28. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked lattice-based encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 513–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_25

    Chapter  Google Scholar 

  29. Ravi, P., Roy, D.B., Bhasin, S., Chattopadhyay, A., Mukhopadhyay, D.: Number “not used” once - practical fault attack on pqm4 implementations of NIST candidates. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 232–250. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16350-1_13

    Chapter  Google Scholar 

  30. Reparaz, O., de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Additively homomorphic ring-LWE masking. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 233–244. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_15

    Chapter  Google Scholar 

  31. Reparaz, O., Sinha Roy, S., Vercauteren, F., Verbauwhede, I.: A masked ring-LWE implementation. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 683–702. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_34

    Chapter  Google Scholar 

  32. Saarinen, M.J.O.: HILA5: on reliability, reconciliation, and error correction for ring-LWE encryption. Cryptology ePrint Archive, Report 2017/424 (2017). https://eprint.iacr.org/2017/424

Download references

Acknowledgements

We would like to thank anonymous reviews of ICISC 2019 and Jung Hee Cheon for their helpful comments and suggestions. This work was supported as part of the Military Crypto Research Center (UD170109ED) funded by Defense the Acquisition Program Administration (DAPA) and the Agency for Defense Development (ADD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Gon Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jung, CG., Lee, J., Ju, Y., Kwon, YB., Kim, SW., Paek, Y. (2020). LizarMong: Excellent Key Encapsulation Mechanism Based on RLWE and RLWR. In: Seo, J. (eds) Information Security and Cryptology – ICISC 2019. ICISC 2019. Lecture Notes in Computer Science(), vol 11975. Springer, Cham. https://doi.org/10.1007/978-3-030-40921-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40921-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40920-3

  • Online ISBN: 978-3-030-40921-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics