Skip to main content

Optimizing Water Cooling Applications on Shared Memory Systems

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2019)

Abstract

The Network Search method is not yet widely used in computational simulations due to its high processing time in the solutions’ calculation. In this sense, this paper seeks to analyze the gains achieved with the parallel implementation of the Network Search method algorithm for shared memory systems. The results achieved with the parallel implementation of the algorithm applied in a real water cooling system achieved a reduction of the total execution time by up to 160 times and reduction of energy consumption by up to 60 times. Given the significant reduction of the execution time achieved with the parallelization of the Network Search method, it can be applied in different scientific problems in substitution of other methods that have less accuracy in their results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.openmp.org/.

  2. 2.

    https://www.open-mpi.org/projects/hwloc/.

References

  1. Andreolli, C., Thierry, P., Borges, L., Skinner, G., Yount, C.: Characterization and optimization methodology applied to stencil computations. In: Reinders, J., Jeffers, J. (eds.) High Performance Parallelism Pearls, pp. 377–396. Morgan Kaufmann, Boston (2015)

    Chapter  Google Scholar 

  2. Blake, G., Dreslinski, R., Mudge, T.: A survey of multicore processors. IEEE Signal. Proc. Mag. 26(6), 26–37 (2009)

    Article  Google Scholar 

  3. Buck, I., et al.: Brook for GPUs: stream computing on graphics hardware. ACM Trans. Graph. (TOG) 23(3), 777–786 (2004)

    Article  Google Scholar 

  4. Caballero, D., Farrés, A., Duran, A., Hanzich, M., Fernández, S., Martorell, X.: Optimizing fully anisotropic elastic propagation on Intel Xeon Phi coprocessors. In: 2nd EAGE Workshop on HPC for Upstream, pp. 1–6 (2015)

    Google Scholar 

  5. Cruz, E.H., Diener, M., Serpa, M.S., Navaux, P.O.A., Pilla, L., Koren, I.: Improving communication and load balancing with thread mapping in manycore systems. In: 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 93–100. IEEE (2018)

    Google Scholar 

  6. Diefenthäler, A.T., Avi, P.C.: Determinać cão da curva de resfriamento da água em ampolas de garrafas térmicas. In: Anais do VII MCSUL - Conferência Sul em Modelagem Computacional, Rio Grande/RS (2016)

    Google Scholar 

  7. Diefenthäler, A.T., Avi, P.C., Padoin, E.L.: Processamento paralelo na determinać cão da curva de resfriamento da Água pelo método de procura em rede. In: Congresso Nacional de Matemática Aplicada e Computacional (CNMAC), São José dos Campos/SP (2017)

    Google Scholar 

  8. Dongarra, J., Luszczek, P.: Anatomy of a globally recursive embedded LINPACK benchmark. In: 16th IEEE High Performance Extreme Computing Conference (HPEC) (2012)

    Google Scholar 

  9. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathematics and Its Applications. Springer, Dordrecht (1996). 322 p

    Book  Google Scholar 

  10. Hadarmard, J.: Lectures on the Cauchy Problem in Linear Partial Differential Equation. Yale University Press, New Haven (1923). 338 p

    Google Scholar 

  11. Halliday, D., Resnick, R., Walker, J.: Fundamentos de física, volume 2: gravitação, ondas e termodinâmica, vol. 8. LTC, Rio de Janeiro (2009). 295 p

    Google Scholar 

  12. He, J., Chen, W., Tang, Z.: NestedMP: enabling cache-aware thread mapping for nested parallel shared memory applications. Parallel Comput. 51, 56–66 (2016)

    Article  Google Scholar 

  13. Huang, S., Xiao, S., Feng, W.C.: On the energy efficiency of graphics processing units for scientific computing. In: IEEE International Symposium on Parallel & Distributed Processing, IPDPS, pp. 1–8. IEEE (2009)

    Google Scholar 

  14. Ibarra, J.R.M.: La materia a muy bajas temperaturas. Revista Ingenierías 11(38), 7–16 (2008)

    Google Scholar 

  15. Incropera, F.P., Dewitt, D.P.: Fundamentos de transferência de calor e de massa, vol. 6. LTC, Rio de Janeiro (2011). 698 p

    Google Scholar 

  16. Jiao, Y., Lin, H., Balaji, P., Feng, W.: Power and performance characterization of computational kernels on the GPU. In: IEEE/ACM International Conference on Green Computing and Communications (GreenCom) and International Conference on Cyber, Physical and Social Computing (CPSCom), pp. 221–228. IEEE (2010)

    Google Scholar 

  17. Liu, G., Schmidt, T., Dömer, R., Dingankar, A., Kirkpatrick, D.: Optimizing thread-to-core mapping on manycore platforms with distributed tag directories. In: 20th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 429–434. IEEE (2015)

    Google Scholar 

  18. Luk, C., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multiprocessors with adaptive mapping. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 45–55. ACM (2009)

    Google Scholar 

  19. Marques, N.R.L., Araujo, I.S.: Física térmica. In: Textos de apoio ao professor de Física, no. 5. vol. 20. UFRGS, Instituto de Física, Porto Alegre/RS (2009). 73 p

    Google Scholar 

  20. Padoin, E.L., de Oliveira, D.A.G., Velho, P., Navaux, P.O.A.: Time-to-solution and energy-to-solution: a comparison between ARM and Xeon. In: Third Workshop on Applications for Multi-Core Architectures (WAMCA SBAC-PAD), New York, USA, pp. 48–53 (2012). https://doi.org/10.1109/WAMCA.2012.10

  21. Padoin, E.L., Pilla, L.L., Boito, F.Z., Kassick, R.V., Velho, P., Navaux, P.O.A.: Evaluating application performance and energy consumption on hybrid CPU+GPU architecture. Cluster Comput. 16(3), 511–525 (2013). https://doi.org/10.1007/s10586-012-0219-6

    Article  Google Scholar 

  22. Padoin, E.L., Pilla, L.L., Castro, M., Boito, F.Z., Navaux, P.O.A., Mehaut, J.F.: Performance/energy trade-off in scientific computing: the case of ARM big.LITTLE and Intel Sandy Bridge. IET Comput. Digital Tech. 2(3), 1–14 (2014)

    Google Scholar 

  23. Serpa, M.S., Krause, A.M., Cruz, E.H., Navaux, P.O.A., Pasin, M., Felber, P.: Optimizing machine learning algorithms on multi-core and many-core architectures using thread and data mapping. In: 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 329–333. IEEE (2018)

    Google Scholar 

  24. Silva, B.F.: Método da procura em rede melhorado: uma proposta para a estimação dos parâmetros do modelo de rakhmatov e vrudhula. Dissertação de Mestrado do Programa de Pós-Graduação em Modelagem Matemática da Unijuí, Maio 2013. 64 p

    Google Scholar 

  25. Silva Neto, A.J.: Técnicas de inteligência computacional inspiradas na natureza: Aplicações em problemas inversos em transferência radiativa. In: Notas em Matemática Aplicada, 2nd ed. vol. 41. SBMAC, São Carlos/SP (2012). 148 p

    Google Scholar 

  26. Silva Neto, A.J., Moura Neto, F.D.: Problemas Inversos: Conceitos Fundamentais e Aplicações. UERJ, Rio de Janeiro (2005). 168 p

    Google Scholar 

  27. Tousimojarad, A., Vanderbauwhede, W.: An efficient thread mapping strategy for multiprogramming on manycore processors. In: Parallel Computing: Accelerating Computational Science and Engineering (CSE), Advances in Parallel Computing, vol. 25, pp. 63–71 (2014)

    Google Scholar 

  28. Valero, M.: Towards ExaFlop supercomputers. In: High Performance Computing Academic Research Network (HPC-net), Rio Patras, Greece, pp. 1–117 (2011)

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by PETROBRAS oil and gas company under Ref. 2016/00133-9 and the project GREEN-CLOUD: Computação em Cloud com Computação Sustentavel (Ref. 16/2551-0000 488-9), from FAPERGS and CNPq Brazil, program PRONEX 12/2014 and CNPq-Universal 436339/2018-8. We also thank RICAP, partially funded by the Ibero-American Program of Science and Technology for Development (CYTED), Ref. 517RT0529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Luiz Padoin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Padoin, E.L. et al. (2020). Optimizing Water Cooling Applications on Shared Memory Systems. In: Crespo-Mariño, J., Meneses-Rojas, E. (eds) High Performance Computing. CARLA 2019. Communications in Computer and Information Science, vol 1087. Springer, Cham. https://doi.org/10.1007/978-3-030-41005-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41005-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41004-9

  • Online ISBN: 978-3-030-41005-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics