Skip to main content

Autonomous Flight of Unmanned Aerial Vehicles Using Evolutionary Algorithms

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2019)

Abstract

This article explores the application of evolutionary algorithms and agent-oriented programming to solve the problem of searching and monitoring objectives through a fleet of unmanned aerial vehicles. The subproblem of static off-line planning is studied to find initial flight plans for each vehicle in the fleet, using evolutionary algorithms to achieve compromise values between the size of the explored area, the proximity of the vehicles, and the monitoring of points of interest defined in the area. The results obtained in the experimental analysis on representative instances of the surveillance problem indicate that the proposed techniques are capable of computing effective flight plans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)

    Google Scholar 

  2. Cercueil, A., Francois, O.: Monte Carlo simulation and population-based optimization. In: Proceedings of the Congress on Evolutionary Computation, pp. 191–198 (2001)

    Google Scholar 

  3. Deakin, M., Waer, H.A.: From intelligent to smart cities. Intell. Build. Int. 3, 133–139 (2011)

    Article  Google Scholar 

  4. Díaz, S., Garate, B., Nesmachnow, S., Iturriaga, S.: Autonomous navigation of unmanned aerial vehicles using markers. In: II Ibero-American Congress on Smart Cities, pp. 1–15 (2019)

    Google Scholar 

  5. Dyer, D.: The watchmaker framework for evolutionary computation. http://watchmaker.uncommons.org/. Accessed May 2019

  6. Han, J., Wang, C., Yi, G.: UAV robust strategy control based on MAS. Abstr. Appl. Anal. 2014, 1–7 (2014)

    MATH  Google Scholar 

  7. Mufalli, F., Batta, R., Nagi, R.: Simultaneous sensor selection and routing of unmanned aerial vehicles for complex mission plans. Comput. Oper. Res. 39(11), 2787–2799 (2012)

    Article  Google Scholar 

  8. Nesmachnow, S.: Computación científica de alto desempeño en la Facultad de Ingeniería, Universidad de la República. Revista de la Asociación de Ingenieros del Uruguay 61(1), 12–15 (2010)

    Google Scholar 

  9. Nesmachnow, S.: An overview of metaheuristics: accurate and efficient methods for optimisation. Int. J. Metaheuristics 3(4), 320–347 (2014)

    Article  Google Scholar 

  10. Oh, H., Shin, H., Kim, S., Tsourdos, A., White, B.: Cooperative mission and path planning for a team of UAVs. In: Valavanis, K., Vachtsevanos, G. (eds.) Handbook of Unmanned Aerial Vehicles, pp. 1509–1545. Springer, Dordrecht (2014). https://doi.org/10.1007/978-90-481-9707-1_14

  11. Ponda, S., Kolacinski, R., Frazzoli, E.: Trajectory optimization for target localization using small unmanned aerial vehicles. In: American Institute of Aeronautics and Astronautics Guidance, Navigation, and Control Conference, pp. 1–25 (2009)

    Google Scholar 

  12. Raol, J., Gopal, A.: Mobile Intelligent Autonomous Systems. CRC Press (2012)

    Google Scholar 

  13. Schleich, J., Panchapakesan, A., Danoy, G., Bouvry, P.: UAV fleet area coverage with network connectivity constraint. In: 11th ACM International Symposium on Mobility Management and Wireless Access, pp. 131–138 (2013)

    Google Scholar 

  14. Shang, K., Karungaru, S., Feng, Z., Ke, L., Terada, K.: A GA-ACO hybrid algorithm for the multi-UAV mission planning problem. In: 14th International Symposium on Communications and Information Technologies (2014)

    Google Scholar 

  15. Shi, H., Sun, X., Sun, C., Chen, D., An, Y.: Research of the path planning complexity for autonomous mobile robot under dynamic environments. In: IEEE Sixth International Conference on Intelligent Systems Design and Applications, pp. 216–219 (2006)

    Google Scholar 

  16. Valavanis, K.: Advances in Unmanned Aerial Vehicles. Springer, Netherlands (2007). https://doi.org/10.1007/978-1-4020-6114-1

    Book  MATH  Google Scholar 

  17. Wietfeld, C., Daniel, K.: Cognitive networking for UAV swarms. In: Valavanis, K., Vachtsevanos, G. (eds.) Handbook of Unmanned Aerial Vehicles, pp. 749–780. Springer, Netherlands (2015). https://doi.org/10.1007/978-90-481-9707-1_32

    Chapter  Google Scholar 

  18. Zeng, Y., Zhang, R., Lim, T.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. Commun. Mag. 54(5), 36–42 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Iturriaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaudín, A. et al. (2020). Autonomous Flight of Unmanned Aerial Vehicles Using Evolutionary Algorithms. In: Crespo-Mariño, J., Meneses-Rojas, E. (eds) High Performance Computing. CARLA 2019. Communications in Computer and Information Science, vol 1087. Springer, Cham. https://doi.org/10.1007/978-3-030-41005-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41005-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41004-9

  • Online ISBN: 978-3-030-41005-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics