Skip to main content

Bounding Volume Hierarchy Acceleration Through Tightly Coupled Heterogeneous Computing

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1087))

Included in the following conference series:

Abstract

Bounding Volume Hierarchy (BVH) is the main acceleration mechanism used for improving ray tracing rendering time. Several research efforts have been made to optimize the BVH algorithm for GPU and CPU architectures. Nonetheless, as far as we know, no study has targeted the APU (Accelerated Processing Unit) that have a CPU and an integrated GPU in the same die. The APU has the advantage of being able to share workloads within its internal processors (CPU and GPU) through heterogeneous computing. We crafted a specific implementation of the ray tracing algorithm with BVH traversal implemented for the APU architecture and compared the performance of this SoC against CPU and GPU equivalent implementations. It was found that the performance of the APU surpassed the other architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Advanced Micro Devices: Getting Started with CodeXL. AMD, September 2012

    Google Scholar 

  2. Advanced Micro Devices: AMD Accelerated Parallel Processing. OpenCL Programming Guide, AMD, November 2013

    Google Scholar 

  3. Advanced Micro Devices: AMD APP SDK. OpenCL User Guide, AMD, August 2015

    Google Scholar 

  4. Advanced Micro Devices: OpenCL Optimization Guide. AMD, August 2015

    Google Scholar 

  5. Advanced Micro Devices: Introducing the Radeon Rays SDK. AMD, August 2016

    Google Scholar 

  6. Áfra, A.T., Wald, I., Benthin, C., Woop, S.: Embree ray tracing kernels: overview and new features. In: ACM SIGGRAPH 2016 Talks, SIGGRAPH 2016, pp. 52:1–52:2. ACM, New York (2016)

    Google Scholar 

  7. Aila, T., Laine, S.: Understanding the efficiency of ray traversal on GPUs. In: Proceedings of the Conference on High Performance Graphics 2009, HPG 2009, pp. 145–149. ACM, New York (2009)

    Google Scholar 

  8. Akenine-Möller, T., Haines, E., Hoffman, N.: Real-Time Rendering, 4th edn. A K Peters/CRC Press, Natick (2018)

    Book  Google Scholar 

  9. Angel, E., Shreiner, D.: Interactive Computer Graphics: A Top-Down Approach with WebGL, 7th edn. Pearson, London (2014)

    Google Scholar 

  10. Bikker, J.: Ray Tracing in Real-Time Games. Ph.D. thesis, NHTV University of Applied Sciences, Reduitlaan 41, 4814DC, Breda, The Netherlands (2012)

    Google Scholar 

  11. Bikker, J., van Schijndel, J.: The brigade renderer: a path tracer for real-time games. Int. J. Comput. Games Technol. 2013, 1–14 (2013)

    Article  Google Scholar 

  12. Chitalu, F.M., Dubach, C., Komura, T.: Bulk-synchronous parallel simultaneous BVH traversal for collision detection on GPUs. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D 2018, pp. 4:1–4:9. ACM, New York (2018)

    Google Scholar 

  13. Du, P., Liu, E.S., Suzumura, T.: Parallel continuous collision detection for high-performance GPU cluster. In: Proceedings of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D 2017, pp. 4:1–4:7. ACM, New York (2017)

    Google Scholar 

  14. Fare, C.: Enabling profiling for SYCL applications. In: Proceedings of the International Workshop on OpenCL, IWOCL 2018, pp. 12:1–12:1. ACM, New York (2018)

    Google Scholar 

  15. Gaster, B., Howes, L., Kaeli, D.R., Mistry, P., Schaa, D.: Heterogeneous Computing with OpenCL: Revised OpenCL 1, 2nd edn. Morgan Kaufmann, San Francisco (2012)

    Google Scholar 

  16. Haines, E., Akenine-Möller, T.: Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs. Apress, Berkeley (2019)

    Book  Google Scholar 

  17. Haines, E., Hanrahan, P., Cook, R.L., Arvo, J., Kirk, D., Heckbert, P.S.: An Introduction to Ray Tracing (The Morgan Kaufmann Series in Computer Graphics). Academic Press, London (1989)

    Google Scholar 

  18. Hennessy, J.: Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers, an imprint of Elsevier, Cambridge (2018)

    MATH  Google Scholar 

  19. Hughes, J.F., et al.: Computer Graphics: Principles and Practice, 3rd edn. Addison-Wesley Professional, Boston (2013)

    Google Scholar 

  20. Intel Corporation: OpenCL\(^{\rm TM}\) Developer Guide for Intel® Processor Graphics. Intel Corporation, February 2015

    Google Scholar 

  21. Kaeli, D.R., Mistry, P., Schaa, D., Zhang, D.P.: Heterogeneous Computing with OpenCL 2.0. Morgan Kaufmann, San Francisco (2015)

    Google Scholar 

  22. Kay, T.L., Kajiya, J.T.: Ray tracing complex scenes. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1986, pp. 269–278. ACM, New York (1986)

    Google Scholar 

  23. Laine, S.: Restart trail for stackless BVH traversal. In: Proceedings of the Conference on High Performance Graphics, HPG 2010, pp. 107–111. Eurographics Association, Aire-la-Ville, Switzerland (2010)

    Google Scholar 

  24. Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., Manocha, D.: Fast BVH construction on GPUs. Comput. Graph. Forum 28, 375–384 (2009)

    Article  Google Scholar 

  25. Lauterbach, C., Mo, Q., Manocha, D.: gProximity: hierarchical GPU-based operations for collision and distance queries. Comput. Graph. Forum 29, 419–428 (2010)

    Article  Google Scholar 

  26. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2012)

    Google Scholar 

  27. Parker, S.G., et al.: OptiX: a general purpose ray tracing engine. ACM Trans. Graph. 29(4), 66:1–66:13 (2010)

    Article  Google Scholar 

  28. Parker, S.G., et al.: OptiX: a general purpose ray tracing engine. In: ACM SIGGRAPH 2010 Papers, SIGGRAPH 2010, pp. 66:1–66:13. ACM, New York (2010)

    Google Scholar 

  29. Patterson, D.: Computer Organization and Design: The Hardware/Software Interface. Morgan Kaufmann, Waltham (2014)

    Google Scholar 

  30. Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory to Implementation, 3rd edn. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  31. Rivera-Alvarado, E., Torres-Rojas, F.: APU performance evaluation for accelerating computationally expensive workloads. In: Conferencia Latinoamericana de Informática, April 2019

    Google Scholar 

  32. Shirley, P.: Ray Tracing in One Weekend, 1st edn. Amazon Digital Services LLC, Seattle (2016)

    Google Scholar 

  33. Shirley, P., Morley, R.K.: Realistic Ray Tracing, 2nd edn. A. K. Peters, Ltd., Natick (2003)

    Google Scholar 

  34. Stallings, W.: Computer Organization and Architecture, 10th edn. Pearson, Hoboken (2015)

    MATH  Google Scholar 

  35. Suffern, K.: Ray Tracing from the Ground Up. A K Peters/CRC Press, Natick (2007)

    Google Scholar 

  36. Tang, M., Manocha, D., Tong, R.: Multi-core collision detection between deformable models. In: SIAM/ACM Joint Conference on Geometric and Physical Modeling, SPM 2009, pp. 355–360. ACM, New York (2009)

    Google Scholar 

  37. Tang, M., Wang, H., Tang, L., Tong, R., Manocha, D.: CAMA: contact-aware matrix assembly with unified collision handling for GPU-based cloth simulation. Comput. Graph. Forum 35, 511–521 (2016)

    Article  Google Scholar 

  38. Vinkler, M., Havran, V., Bittner, J.: Bounding volume hierarchies versus Kd-trees on contemporary many-core architectures. In: Proceedings of the 30th Spring Conference on Computer Graphics, SCCG 2014, pp. 29–36. ACM, New York (2014)

    Google Scholar 

  39. Wald, I.: On fast construction of SAH-based bounding volume hierarchies. In: Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, RT 2007, pp. 33–40. IEEE Computer Society, Washington, DC(2007)

    Google Scholar 

  40. Wang, Y., Liu, C., Deng, Y.: A feasibility study of ray tracing on mobile GPUs. In: SIGGRAPH Asia 2014 Mobile Graphics and Interactive Applications, SA 2014, pp. 31–35. ACM, New York (2014)

    Google Scholar 

  41. Wickham, H., Grolemund, G.: R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O’Reilly Media, Sebastopol (2017)

    Google Scholar 

  42. Ylitie, H., Karras, T., Laine, S.: Efficient incoherent ray traversal on GPUs through compressed wide BVHs. In: Proceedings of High Performance Graphics, HPG 2017, pp. 4:1–4:13. ACM, New York (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Rivera-Alvarado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rivera-Alvarado, E., Torres-Rojas, F.J. (2020). Bounding Volume Hierarchy Acceleration Through Tightly Coupled Heterogeneous Computing. In: Crespo-Mariño, J., Meneses-Rojas, E. (eds) High Performance Computing. CARLA 2019. Communications in Computer and Information Science, vol 1087. Springer, Cham. https://doi.org/10.1007/978-3-030-41005-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41005-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41004-9

  • Online ISBN: 978-3-030-41005-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics