Skip to main content

Modeling Block Structured Project Scheduling with Resource Constraints

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11958))

Included in the following conference series:

Abstract

We propose a formal model of block-structured project scheduling with resource constraints, with the goal of designing optimization algorithms. We combine block structured modeling of business processes with results from project scheduling literature. Differently from standard approaches, here we focus on block structured scheduling processes. Our main achievement is the formulation of an abstract mathematical model of block-structured resource-constrained scheduling processes. We tested the correctness and feasibility of our approach using an initial experimental prototype based on Constraint Logic Programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The complete ECLiPSe-CLP code, the data sets that we have used in our experiments, as well as the experimental results obtained can be downloaded from http://software.ucv.ro/~cbadica/lssc2019.zip.

References

  1. Bădică, A., Bădică, C., Dănciulescu, D., Logofătu, D.: Greedy heuristics for automatic synthesis of efficient block-structured scheduling processes from declarative specifications. In: Iliadis, L., Maglogiannis, I., Plagianakos, V. (eds.) AIAI 2018. IAICT, vol. 519, pp. 183–195. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92007-8_16

    Chapter  Google Scholar 

  2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, San Franisco (1979)

    MATH  Google Scholar 

  3. Kelley Jr., J.E.: Critical-path planning and scheduling: mathematical basis. Oper. Res. 9(3), 296–320 (1961). https://doi.org/10.1287/opre.9.3.296. Informs

    Article  MathSciNet  MATH  Google Scholar 

  4. Kolisch, R., Sprecher, A.: PSPLIB - a project scheduling library. Eur. J. Oper. Res. 96(1), 205–216 (1997). https://doi.org/10.1016/S0377-2217(96)00170-1. Elsevier

    Article  MATH  Google Scholar 

  5. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862_18

    Chapter  Google Scholar 

  6. Mrasek, R., Mülle, J., Böhm, K.: Process synthesis with sequential and parallel constraints. In: Debruyne, C., et al. (eds.) On the Move to Meaningful Internet Systems, vol. 10033, pp. 43–60. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3_3

    Chapter  Google Scholar 

  7. Niederliński, A.: A Gentle Guide to Constraint Logic Programming via ECLiPSe, 3rd edn. Jacek Skalmierski Computer Studio, Gliwice (2014)

    Google Scholar 

  8. Schimpf, J., Shen, K.: ECLiPSe - from LP to CLP. Theor. Pract. Log. Program. 12(1–2), 127–156 (2012). https://doi.org/10.1017/S1471068411000469. Cambridge University Press

    Article  MATH  Google Scholar 

  9. Sindelar, M., Sitaraman, R.K., Shenoy, P.: Sharing-aware algorithms for virtual machine colocation. In: Proceedings of 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 367–378. ACM (2011). https://doi.org/10.1145/1989493.1989554

  10. Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–393 (1975). https://doi.org/10.1016/S0022-0000(75)80008-0. Academic Press

    Article  MathSciNet  MATH  Google Scholar 

  11. The ECLiPSe Constraint Programming System. http://www.eclipseclp.org/. Accessed Mar 2019

  12. Gecode - Generic Constraint Development Environment. https://www.gecode.org/. Accessed Mar 2019

  13. Project Scheduling Problem Library - PSPLIB. http://www.om-db.wi.tum.de/psplib/. Accessed Mar 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costin Bădică .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bădică, A., Bădică, C., Logofătu, D., Buligiu, I., Ciora, L. (2020). Modeling Block Structured Project Scheduling with Resource Constraints. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science(), vol 11958. Springer, Cham. https://doi.org/10.1007/978-3-030-41032-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41032-2_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41031-5

  • Online ISBN: 978-3-030-41032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics