Skip to main content

Parallel Stream Processing with MPI for Video Analytics and Data Visualization

  • Conference paper
  • First Online:
High Performance Computing Systems (WSCAD 2018)

Abstract

The amount of data generated is increasing exponentially. However, processing data and producing fast results is a technological challenge. Parallel stream processing can be implemented for handling high frequency and big data flows. The MPI parallel programming model offers low-level and flexible mechanisms for dealing with distributed architectures such as clusters. This paper aims to use it to accelerate video analytics and data visualization applications so that insight can be obtained as soon as the data arrives. Experiments were conducted with a Domain-Specific Language for Geospatial Data Visualization and a Person Recognizer video application. We applied the same stream parallelism strategy and two task distribution strategies. The dynamic task distribution achieved better performance than the static distribution in the HPC cluster. The data visualization achieved lower throughput with respect to the video analytics due to the I/O intensive operations. Also, the MPI programming model shows promising performance outcomes for stream processing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SPar’s home page: https://gmap.pucrs.br/spar.

References

  1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: High-level and Efficient Streaming on Multicore, Chap. 13, pp. 261–280. Wiley-Blackwell, Hoboken (2014)

    Google Scholar 

  2. Andrade, H., Gedik, B., Turaga, D.: Fundamentals of Stream Processing: Application Design, Systems, and Analytics. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  3. Ayachit, U.: The ParaView Guide: A Parallel Visualization Application. Kitware Inc., New York (2015)

    Google Scholar 

  4. De Matteis, T., Mencagli, G.: Proactive elasticity and energy awareness in data stream processing. J. Syst. Softw. 127(C), 302–319 (2017). https://doi.org/10.1016/j.jss.2016.08.037

    Article  Google Scholar 

  5. Ewald, E., Vogel, A., Rista, C., Griebler, D., Manssour, I., Gustavo, L.: Parallel and distributed processing support for a geospatial data visualization DSL. In: Symposium on High Performance Computing Systems (WSCAD), pp. 221–228. IEEE (2018)

    Google Scholar 

  6. FastFlow: FastFlow (FF) Website (2019). http://mc-fastflow.sourceforge.net/. Accessed Feb 2019

  7. Friedman, E., Tzoumas, K.: Introduction to Apache Flink: Stream Processing for Real Time and Beyond, 1st edn. O’Reilly Media Inc., Sebastopol (2016)

    Google Scholar 

  8. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance evaluation. SIGPLAN Not. 42(10), 57–76 (2007). https://doi.org/10.1145/1297105.1297033

    Article  Google Scholar 

  9. Griebler, D., Danelutto, M., Torquati, M., Fernandes, L.G.: SPar: a DSL for high-level and productive stream parallelism. Parallel Process. Lett. 27(01), 1740005 (2017). https://doi.org/10.1142/S0129626417400059

    Article  MathSciNet  Google Scholar 

  10. Griebler, D., Hoffmann, R.B., Danelutto, M., Fernandes, L.G.: Higher-level parallelism abstractions for video applications with SPar. In: Parallel Computing is Everywhere, Proceedings of the International Conference on Parallel Computing, ParCo 2017, pp. 698–707. IOS Press, Bologna (2017). https://doi.org/10.3233/978-1-61499-843-3-698

  11. Griebler, D., Hoffmann, R.B., Danelutto, M., Fernandes, L.G.: Stream Parallelism with ordered data constraints on multi-core systems. J. Supercomput. 75, 1–20 (2018). https://doi.org/10.1007/s11227-018-2482-7

    Article  Google Scholar 

  12. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream processing optimizations. ACM Comput. Surv. 46(4), 46:1–46:34 (2014)

    Article  Google Scholar 

  13. Jain, A.: Mastering Apache Storm: Real-time Big Data Streaming Using Kafka, Hbase and Redis. Packt Publishing, Birmingham (2017)

    Google Scholar 

  14. Latham, R., Bautista-Gomez, L., Balaji, P.: Portable topology-aware MPI-I/O. In: IEEE International Conference on Parallel and Distributed Systems (ICPADS), pp. 710–719, December 2017. https://doi.org/10.1109/ICPADS.2017.00096

  15. Ledur, C., Griebler, D., Manssour, I., Fernandes, L.G.: A high-level DSL for geospatial visualizations with multi-core parallelism support. In: 41th IEEE Computer Society Signature Conference on Computers, Software and Applications, COMPSAC 2017, pp. 298–304. IEEE, Torino (2017)

    Google Scholar 

  16. Matteis, T.D., Mencagli, G.: Keep calm and react with foresight: strategies for low-latency and energy-efficient elastic data stream processing. In: Proceedings of the ACM Symposium on Principles and Practice of Parallel Programming, pp. 13:1–13:12 (2016)

    Google Scholar 

  17. McCool, M., Robison, A.D., Reinders, J.: Structured Parallel Programming: Patterns for Efficient Computation. Morgan Kaufmann, Burlington (2012)

    Google Scholar 

  18. Mendez, S., Rexachs, D., Luque, E.: Analyzing the parallel I/O severity of MPI applications. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 953–962 (2017). https://doi.org/10.1109/CCGRID.2017.45

  19. Moreland, K.: A survey of visualization pipelines. IEEE Trans. Visual Comput. Graph. 19(3), 367–378 (2013)

    Article  Google Scholar 

  20. Pereira, R., Azambuja, M., Breitman, K., Endler, M.: An architecture for distributed high performance video processing in the cloud. In: international Conference on Cloud Computing, pp. 482–489. IEEE (2010)

    Google Scholar 

  21. Perrot, A., Bourqui, R., Hanusse, N., Lalanne, F., Auber, D.: Large interactive visualization of density functions on big data infrastructure. In: IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 99–106, October 2015. https://doi.org/10.1109/LDAV.2015.7348077

  22. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New York (2003)

    Google Scholar 

  23. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism. O’Reilly Media, Sebastopol (2007)

    Google Scholar 

  24. Seo, S., Latham, R., Zhang, J., Balaji, P.: Implementation and evaluation of MPI nonblocking collective I/O. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 1084–1091, May 2015. https://doi.org/10.1109/CCGrid.2015.81

  25. Steed, C.A., et al.: Big data visual analytics for exploratory earth system simulation analysis. Comput. Geosci. 61, 71–82 (2013). https://doi.org/10.1016/j.cageo.2013.07.025

    Article  Google Scholar 

  26. Tan, H., Chen, L.: An approach for fast and parallel video processing on apache Hadoop clusters. In: 2014 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6, July 2014. https://doi.org/10.1109/ICME.2014.6890135

  27. Theis, T.N., Wong, H.S.P.: The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19(2), 41 (2017)

    Article  Google Scholar 

  28. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: a language for streaming applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45937-5_14

    Chapter  Google Scholar 

  29. Vogel, A., Griebler, D., De Sensi, D., Danelutto, M., Fernandes, L.G.: Autonomic and latency-aware degree of parallelism management in SPar. In: Mencagli, G., et al. (eds.) Euro-Par 2018. LNCS, vol. 11339, pp. 28–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10549-5_3

    Chapter  Google Scholar 

  30. Wylie, B.N., Baumes, J.: A unified toolkit for information and scientific visualization. In: VDA, p. 72430 (2009)

    Google Scholar 

  31. Zhang, T., Hua, G., Ligmann-Zielinska, A.: Visually-driven parallel solving of multi-objective land-use allocation problems: a case study in Chelan, Washington. Earth Sci. Inf. 8, 809–825 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001, by the FAPERGS 01/2017-ARD project ParaElastic (No. 17/2551-0000871-5), and by the Universal MCTIC/CNPq N\(^{\circ }\) 28/2018 project called SParCloud (No. 437693/2018-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vogel, A. et al. (2020). Parallel Stream Processing with MPI for Video Analytics and Data Visualization. In: Bianchini, C., Osthoff, C., Souza, P., Ferreira, R. (eds) High Performance Computing Systems. WSCAD 2018. Communications in Computer and Information Science, vol 1171. Springer, Cham. https://doi.org/10.1007/978-3-030-41050-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41050-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41049-0

  • Online ISBN: 978-3-030-41050-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics