Abstract
This paper investigates the semi-persistent scheduling (SPS) strategy for enhanced vehicle-to-everything (eV2X) services, which aims to meet the low latency and high reliability (LLHR) demands. To increase available spectrum and improve resource utilization, millimeter wave (mmWave) and non-orthogonal multiple access (NOMA) are considered. We first formulate the optimization problem of scheduling and resource allocation to minimize the SPS period. To solve this problem, the LLHR power control algorithm is proposed to provide evaluation indicators for user scheduling. Then, the beam division and user clustering algorithm is designed to reduce the complexity of the matching between users and resource blocks. After that, the matching problem with peer effects is solved by the proposed union-based matching algorithm. Complexity analysis is presented, and simulation results show that the scheduling period of eV2X systems can be improved by the proposed SPS strategy compared with the conventional mmWave SPS schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Di, B., Song, L., Li, Y., Li, G.Y.: Non-orthogonal multiple access for high-reliable and low-latency V2X communications in 5G systems. IEEE J. Sel. Areas Commun. 35(10), 2383–2397 (2017)
Study on enhancement of 3GPP Support for 5G V2X Services, Release 16, document 3GPP TR 22.886, December 2018
Study on NR Vehicle-to-Everything (V2X), Release 16, document 3GPP TR 38.885, March 2019
Wang, P., Di, B., Zhang, H., Bian, K., Song, L.: Cellular V2X communications in unlicensed spectrum: harmonious coexistence With VANET in 5G systems. IEEE Trans. Wireless Commun. 17(8), 5212–5224 (2018)
Asadi, A., Müller, S., Sim, G.H., Klein, A., Hollick, M.: FML: fast machine learning for 5G mmWave vehicular communications. In: Proceedings of IEEE INFOCOM, Honolulu, HI, pp. 1961–1969 (2018)
Study on evaluation methodology of new vehicle-to-everything (V2X) use cases for LTE and NR, Release 15, document 3GPP, TR 37.885, December 2018
Giordani, M., Zanella, A., Zorzi, M.: Millimeter wave communication in vehicular networks: challenges and opportunities. In: Proceedings of IEEE MOCAST, Thessaloniki, pp. 1–6 (2017)
Sohrabi, F., Yu, W.: Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J. Sel. Areas Commun. 10(3), 501–513 (2016)
Zhang, D., Liu, Y., Dai, L., Bashir, A.K., Nallanathan, A., Shim, B.: Performance analysis of FD-NOMA-based decentralized V2X systems. IEEE Trans. Commun. 67, 5024–5036 (2019). (in press)
Qian, L.P., Wu, Y., Zhou, H., Shen, X.: Non-orthogonal multiple access vehicular small cell networks: architecture and solution. IEEE Netw. 31(4), 15–21 (2017)
Luo, F.L., Zhang, C.J.: Signal Processing for 5G: Algorithms and Implementations, pp. 143–166. Wiley, London (2016)
Wang, B., Dai, L., Gao, X., Hanzo, L.: Beamspace MIMO-NOMA for millimeter-wave communications using lens antenna arrays. In: Proceedings of IEEE VTC-Fall, Toronto, ON, pp. 1–5 (2017)
Wei, Z., Zhao, L., Guo, J., Ng, D.W.K., Yuan, J.: A multi-beam NOMA framework for hybrid mmWave systems. In: Proceedings of IEEE ICC, Kansas City, MO, pp. 1–7 (2018)
Cui, J., Liu, Y., Ding, Z., Fan, P., Nallanathan, A.: User selection and power allocation for mmWave-NOMA networks. In: Proceedings IEEE GLOBECOM, Singapore, pp. 1–6 (2017)
Wang, B., Dai, L., Wang, Z., Ge, N., Zhou, S.: Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE J. Sel. Areas Commun. 35(10), 2370–2382 (2017)
Karadag, G., Gul, R., Sadi, Y., Coleri Ergen, S.: QoS-constrained semi-persistent scheduling of machine-type communications in cellular networks. IEEE Trans. Wireless Commun. 18(5), 2737–2750 (2019)
Dai, L., Wang, B., Peng, M., Chen, S.: Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer. IEEE J. Sel. Areas Commun. 37(1), 131–141 (2019)
Alsaba, Y., Leow, C.Y., Abdul Rahim, S.K.: Full-duplex cooperative non-orthogonal multiple access with beamforming and energy harvesting. IEEE Access 6, 19726–19738 (2018)
Lee, K., Kim, J., Park, Y., Wang, H., Hong, D.: Latency of cellular-based V2X: perspectives on TTI-proportional latency and TTI-independent latency. IEEE Access 5, 15800–15809 (2017)
Acknowledgment
This work was supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province under grant number SJKY19_2285.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Shi, F., Wang, B., Shi, R., Tang, J., Hu, J. (2020). MmWave-NOMA-Based Semi-persistent Scheduling for Enhanced V2X Services. In: Gao, H., Feng, Z., Yu, J., Wu, J. (eds) Communications and Networking. ChinaCom 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-030-41114-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-41114-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41113-8
Online ISBN: 978-3-030-41114-5
eBook Packages: Computer ScienceComputer Science (R0)