Abstract
With the development of technology, the mobile communication system has the characteristics of high rate and low delay. How to deal with the signal quickly and accurately has become a research hotspot. As the first step of the mobile communication system, the efficiency and performance of synchronization directly determine the follow-up signal Processing. In the mobile communication system, the terminal needs to synchronize the frequency and time of the received signal, that is, the synchronization signal is captured and processed. Frequency synchronization mainly carries on the digital down-conversion operation to the signal, the time synchronization is mainly through sliding the baseband signal with the locally generated synchronization sequence to determine the starting position of the synchronization signal, so as to achieve the time synchronization. Therefore, in this paper, taking LTE-A (Long Term Evolution Advanced) system as an example, a low-complexity sliding correlation method based on Fast Fourier Transform (FFT) is proposed in this paper, which can significantly reduce the computations in the synchronization process the complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yang, X.M., Xiong, Y., Jia, G.Q.: Fast acquisition of primary synchronization signal in LTE systems. J. Appl. Sci. 30, 14–18 (2012)
Berggren, F., Popović, B.M.: Primary synchronization signal for D2D communications in LTE-Advanced. IEEE Commun. Lett. 19(7), 1241–1244 (2015)
Elsherif, A.R., Khairy, M.M.: Adaptive primary synchronization signal detection for 3GPP long term evolution. In: Wireless Communications and Mobile Computing Conference, pp. 1716–1721. IEEE (2013)
Shimura, A., Sawahashi, M., Nagata, S., Kishiyama, Y.: Initial cell search method with MLD based frequency offset estimation in LTE heterogeneous networks. In: Proceedings of IEEE VTC2017-Fall, September 2017
Shoba, B., Jayanthi, K.: Low complex primary and secondary synchronization signal structure design for LTE systems. In: International Conference on Microwave, Optical and Communication Engineering, pp. 467–470. IEEE (2016)
Timoshenko, A., Egor, B., Molenkamp, K., Molenkamp, N.B.: Zadoff-Chu sequence based initial synchronization for multipurpose MANET devices. In: 2017 International Siberian Conference on Control and Communications (SIBCON), pp. 1–4 (2017). ISSN 2380-6516
Xiao, C., Zhao, Q., Shen, M., et al.: Systems and methods for detecting a primary synchronization signal in a wireless communication system (2016)
Meidlinger, M., Wang, Q.: Performance evaluation of LTE advanced downlink channel estimators. In: 19th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 252–255. IEEE Press, Vienna, April 2012
Jarich, P.: The return of 4.5G-Why LTE-A Pro is more than just a silly name. FierceWirelessTech (11) (2015)
Ibrahim, B.: Design and implementation of synchroniation and cell search algorithms for LTE receiver. In: 32nd National Radio Science Conference. October University for Modern Sciences and Arts, Cairo (2015)
Shimura, A., Sawahashi, M., Nagata, S., Kishiyama, Y.: Effects of time and space diversity on physical cell ID detection for NB-IoT. In: Proceedings of the IEEE VTS APWCS 2017, August 2017
Sriharsha, M.: A complete cell search and synchronization in LTE. J. Wirel. Commun. Netw. 2017(1), 101–106 (2017)
Shoba, B.: Low complex primary and secondary synchronization signal structure design for LTE systems. In: International Conference on Microwave. IIT, Varanasi (2015)
Lin, J.C., Sun, Y.T.: Initial synchronization exploiting inherent diversity for the LTE-A sector search process. IEEE Trans. Wireless Commun. 15(2), 1114–1128 (2016)
Jeon, Y., Park, H., Choi, E.: Synchronization and cell search procedure in 3GPP 5G NR systems. In: 2019 21st International Conference on Advanced Communication Technology (ICACT), PyeongChang, Kwangwoon_Do, Korea (South), pp. 475–478 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Wang, H., Chen, D., Li, J. (2020). Primary Synchronization Signal Low Complexity Sliding Correlation Method. In: Gao, H., Feng, Z., Yu, J., Wu, J. (eds) Communications and Networking. ChinaCom 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-030-41114-5_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-41114-5_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41113-8
Online ISBN: 978-3-030-41114-5
eBook Packages: Computer ScienceComputer Science (R0)