Abstract
With the emergence of diverse computation-intensive mobile applications (such as virtual reality), demands for data processing from users are rapidly increasing in mobile edge computing (MEC). However, existing mobile edge servers (MES) are susceptible to propagation delays and loss and fail to provide timely and efficient services. Facing this problem, we focus on applying unmanned aerial vehicles (UAVs) equipped with computing resources to provide mobile edge computing offload services for users. UAV as an MES can guarantee low propagation delay and high reliability due to its maneuverability and short-distance line-of-sight communications. In this paper, we study a joint computing offloading problem consideration of user equipments, ground base stations and aerial UAVs. The system provides two offloading methods. The first offloading method is the air-offloading, where a user equipment can offload computing tasks to UAV-enabled MEC servers. The second offloading method is ground-offloading, where a user equipment can offload computing tasks to existing MESs. The task-aware optimization offloading scheme is proposed and it selects local execution or an offloading method based on the latency and energy constraints. Simulation results show that our proposed offloading selection scheme outperforms benchmark schemes. The results demonstrate that the proposed schemes improve quality of service (QoS) and have low task block rate under latency and energy constraints.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gupta, L., Jain, R., Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2016). Secondquarter
Fan, L., Yan, W., Chen, X., Chen, Z., Shi, Q.: An energy efficient design for UAV communication with mobile edge computing. China Commun. 16(1), 26–36 (2019)
Ruan, L., et al.: Energy-efficient multi-UAV coverage deployment in UAV networks: a game-theoretic framework. China Commun. 15(10), 194–209 (2018)
Li, J., Liu, Q., Wu, P., Shu, F., Jin, S.: Task offloading for UAV-based mobile edge computing via deep reinforcement learning. In: 2018 IEEE/CIC International Conference on Communications in China (ICCC), pp. 798–802, August 2018
Hu, Q., Cai, Y., Yu, G., Qin, Z., Zhao, M., Li, G.Y.: Joint offloading and trajectory design for UAV-enabled mobile edge computing systems. IEEE Internet Things J. 6(2), 1879–1892 (2019)
Zhou, F., Wu, Y., Sun, H., Chu, Z.: UAV-enabled mobile edge computing: offloading optimization and trajectory design. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6, May 2018
Sharma, V., You, I., Jayakody, D.N.K., Reina, D.G., Choo, K.R.: Neural-blockchain based ultra-reliable caching for edge-enabled UAV networks. IEEE Trans. Ind. Inform. 15, 5723–5736 (2019)
Du, Y., Wang, K., Yang, K., Zhang, G.: Energy-efficient resource allocation in UAV based MEC system for IoT devices. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, December 2018
Zhou, F., Wu, Y., Hu, R.Q., Qian, Y.: Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE J. Sel. Areas Commun. 36(9), 1927–1941 (2018)
Bai, T., Wang, J., Ren, Y., Hanzo, L.: Energy-efficient computation offloading for secure UAV-edge-computing systems. IEEE Trans. Veh. Technol. 68, 6074–6087 (2019)
Zhang, J., et al.: Stochastic computation offloading and trajectory scheduling for UAV-assisted mobile edge computing. IEEE Internet Things J. 6(2), 3688–3699 (2019)
Qian, Y., Wang, F., Li, J., Shi, L., Cai, K., Shu, F.: User association and path planning for UAV-aided mobile edge computing with energy restriction. IEEE Wirel. Commun. Lett. 8, 1312–1315 (2019)
Khuwaja, A.A., Chen, Y., Zhao, N., Alouini, M., Dobbins, P.: A survey of channel modeling for UAV communications. IEEE Commun. Surv. Tutor. 20(4), 2804–2821 (2018). Fourthquarter
Acknowledgement
This work is jointly supported by National Natural Science Foundation of China (Grant No. 61671088), and the National Natural Science Foundation of China (Grant No. 61771070).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Hu, J., Zhang, H., Li, X., Ji, H. (2020). Task-Aware Joint Computation Offloading for UAV-Enabled Mobile Edge Computing Systems. In: Gao, H., Feng, Z., Yu, J., Wu, J. (eds) Communications and Networking. ChinaCom 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-030-41114-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-41114-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41113-8
Online ISBN: 978-3-030-41114-5
eBook Packages: Computer ScienceComputer Science (R0)