Skip to main content

Advanced Hazard Analysis and Risk Assessment in the ISO 26262 Functional Safety Standard Using Rigorous Simulation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11971))

Abstract

With the increasing level of automation in road vehicles, the traditional workhorse of safety assessment, namely, physical testing, is no longer adequate as the sole means of ensuring safety. A standard safety assessment benchmark is to evaluate the behavior of a new design in the context of a risk-exposing test scenario. Manual or computerized analysis of the behavior of such systems is challenging because of the presence of non-linear physical dynamics, computational components, and impacts. In this paper, we study the utility of a new technology called rigorous simulation for addressing this problem. Rigorous simulation aims to combine some of the benefits of traditional simulation methods with those of traditional analytical methods such as symbolic algebra. We develop and analyze in detail a case study involving an Intersection Collision Avoidance (ICA) test scenario using the hazard analysis techniques prescribed in the ISO 26262 functional safety standard. We show that it is possible to formally model and rigorously simulate the test scenario to produce informative results about the severity of collisions. The work presented in this paper demonstrates that rigorous simulation can handle models of non-trivial complexity. The work also highlights the practical challenges encountered in using it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acumen (2016). http://acumen-language.org

  2. Aljarbouh, A.: Accelerated simulation of hybrid systems: method combining static analysis and run-time execution analysis (Simulation Accélérée des Systèmes Hybrides: méthode combinant analyse statique et analyse à l’exécution). Ph.D. thesis, University of Rennes 1, France (2017). https://tel.archives-ouvertes.fr/tel-01614081

  3. Aljarbouh, A.: Non-standard zeno-free simulation semantics for hybrid dynamical systems. In: Ganty, P., Kaâniche, M. (eds.) VECoS 2019. LNCS, vol. 11847, pp. 16–31. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35092-5_2

    Chapter  Google Scholar 

  4. Aljarbouh, A., Caillaud, B.: On the regularization of chattering executions in real time simulation of hybrid systems. In: 11th Baltic Young Scientists Conference, Tallinn, Estonia, p. 49, July 2015. https://hal.archives-ouvertes.fr/hal-01246853

  5. Aljarbouh, A., Caillaud, B.: Robust simulation for hybrid systems: chattering path avoidance. In: Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), Linköping University, Sweden, 7–9 October 2015, pp. 175–185, No. 119. Linköping University Electronic Press, Linköpings universitet (2015)

    Google Scholar 

  6. Aljarbouh, A., Caillaud, B.: Chattering-free simulation of hybrid dynamical systems with the function mock-up interface 2.0. In: Proceedings of the First Japanese Modelica Conferences, Tokyo, Japan, 23–24 May 2016. Linköping University Electronic Press, Linköpings universitet (2016)

    Google Scholar 

  7. Aljarbouh, A., Zeng, Y., Duracz, A., Caillaud, B., Taha, W.: Chattering-free simulation for hybrid dynamical systems semantics and prototype implementation. In: 2016 IEEE International Conference on Computational Science and Engineering, CSE 2016, and IEEE International Conference on Embedded and Ubiquitous Computing, EUC 2016, and 15th International Symposium on Distributed Computing and Applications for Business Engineering, DCABES 2016, Paris, France, 24–26 August 2016, pp. 412–422 (2016). https://doi.org/10.1109/CSE-EUC-DCABES.2016.217

  8. ALM-PLM (2015). http://polarion.com

  9. Baskar, L.D., De Schutter, B., Hellendoorn, J., Papp, Z.: Traffic control and intelligent vehicle highway systems: a survey. IET Intel. Transp. Syst. 5(1), 38–52 (2011)

    Article  Google Scholar 

  10. Basma, F., Tachwali, Y., Refai, H.H.: Intersection collision avoidance system using infrastructure communication. In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 422–427. IEEE, Washington, DC (2011)

    Google Scholar 

  11. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  12. De Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithms 37(1–4), 147–158 (2004)

    Article  MathSciNet  Google Scholar 

  13. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_5

    Chapter  Google Scholar 

  14. Duracz, A., Eriksson, H., Bartha, F.Á., Zeng, Y., Xu, F., Taha, W.: Using rigorous simulation to support ISO 26262 hazard analysis and risk assessment. In: 2015 IEEE 12th International Conference on Embedded Software and Systems (ICESS), pp. 1093–1096. IEEE, August 2015

    Google Scholar 

  15. Duracz, J., Farjudian, A., Konečný, M., Taha, W.: Function interval arithmetic. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 677–684. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2_101

    Chapter  Google Scholar 

  16. EU Regulation No. 347/2012: Type-approval requirements for certain categories of motor vehicles with regard to advanced emergency braking systems (2012)

    Google Scholar 

  17. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  18. Henzinger, T.A.: The theory of hybrid automata. In: Logic in Computer Science, pp. 278–292. IEEE Computer Society, New Brunswick (1996)

    Google Scholar 

  19. ISO26262: Road vehicles - functional safety (2011)

    Google Scholar 

  20. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now formally verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_6

    Chapter  Google Scholar 

  21. Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 4, 4 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Masood, J., Philippsen, R., Duracz, J., Taha, W., Eriksson, H., Grante, C.: Domain analysis for standardised functional safety: a case study on design-time verification of automatic emergency braking. In: International Federation of Automotive Engineering Societies 2014 World Automotive Congress, Maastricht, The Netherlands, 2–6 June 2014. FISITA (2014)

    Google Scholar 

  23. Medini analyze (2015). http://ikv.de

  24. Mosterman, P.J.: An overview of hybrid simulation phenomena and their support by simulation packages. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 165–177. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48983-5_17

    Chapter  MATH  Google Scholar 

  25. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Nedialkov, N.S., Von Mohrenschildt, M.: Rigorous simulation of hybrid dynamic systems with symbolic and interval methods. In: 2002 Proceedings of the American Control Conference, vol. 1, pp. 140–147. IEEE (2002)

    Google Scholar 

  27. Prover (2015). http://prover.com

  28. Ramdani, N., Nedialkov, N.S.: Computing reachable sets for uncertain nonlinear hybrid systems using interval constraint-propagation techniques. Nonlinear Anal. Hybrid Syst. 5(2), 149–162 (2011)

    Article  MathSciNet  Google Scholar 

  29. RiskCAT (2015). http://cats-tools.de

  30. SCADE design verifier (2015). http://esterel-technologies.com

  31. Simulink design verifier (2015). http://mathworks.com

  32. SOX2 (2015). http://enco-software.com

  33. Taha, W.: Acumen: an open-source testbed for cyber-physical systems research. In: Mandler, B., et al. (eds.) IoT360 2015. LNICST, vol. 169, pp. 118–130. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47063-4_11

    Chapter  Google Scholar 

  34. Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations (2011)

    Google Scholar 

  35. Ueda, K., Matsumoto, S.: Hyrose: a symbolic simulator of the hybrid constraint language HydLa. In: Computer Software, vol. 30. Citeseer (2013)

    Google Scholar 

  36. Zhang, Y., Antonsson, E.K., Grote, K.: A new threat assessment measure for collision avoidance systems. In: 2006 IEEE Intelligent Transportation Systems Conference, ITSC 2006, pp. 968–975. IEEE, September 2006. https://doi.org/10.1109/ITSC.2006.1706870

Download references

Acknowledgments

This work is supported by US National Science Foundation award CPS-1136099, Swedish Knowledge Foundation, Center for Research on Embedded Systems (CERES), VINNOVA (Dnr. 2011-01819), the European University of Brittany, and the Regional Council of Brittany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman Aljarbouh .

Editor information

Editors and Affiliations

Appendix A

Appendix A

Figure 8 demonstrates the finite state machine of the ICA’s system with all possible transitions between modes.

Fig. 8.
figure 8

The finite state machine of the ICA’s system with all possible transitions between modes.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duracz, A. et al. (2020). Advanced Hazard Analysis and Risk Assessment in the ISO 26262 Functional Safety Standard Using Rigorous Simulation. In: Chamberlain, R., Edin Grimheden, M., Taha, W. (eds) Cyber Physical Systems. Model-Based Design. CyPhy WESE 2019 2019. Lecture Notes in Computer Science(), vol 11971. Springer, Cham. https://doi.org/10.1007/978-3-030-41131-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41131-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41130-5

  • Online ISBN: 978-3-030-41131-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics