Abstract
With the increasing level of automation in road vehicles, the traditional workhorse of safety assessment, namely, physical testing, is no longer adequate as the sole means of ensuring safety. A standard safety assessment benchmark is to evaluate the behavior of a new design in the context of a risk-exposing test scenario. Manual or computerized analysis of the behavior of such systems is challenging because of the presence of non-linear physical dynamics, computational components, and impacts. In this paper, we study the utility of a new technology called rigorous simulation for addressing this problem. Rigorous simulation aims to combine some of the benefits of traditional simulation methods with those of traditional analytical methods such as symbolic algebra. We develop and analyze in detail a case study involving an Intersection Collision Avoidance (ICA) test scenario using the hazard analysis techniques prescribed in the ISO 26262 functional safety standard. We show that it is possible to formally model and rigorously simulate the test scenario to produce informative results about the severity of collisions. The work presented in this paper demonstrates that rigorous simulation can handle models of non-trivial complexity. The work also highlights the practical challenges encountered in using it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acumen (2016). http://acumen-language.org
Aljarbouh, A.: Accelerated simulation of hybrid systems: method combining static analysis and run-time execution analysis (Simulation Accélérée des Systèmes Hybrides: méthode combinant analyse statique et analyse à l’exécution). Ph.D. thesis, University of Rennes 1, France (2017). https://tel.archives-ouvertes.fr/tel-01614081
Aljarbouh, A.: Non-standard zeno-free simulation semantics for hybrid dynamical systems. In: Ganty, P., Kaâniche, M. (eds.) VECoS 2019. LNCS, vol. 11847, pp. 16–31. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35092-5_2
Aljarbouh, A., Caillaud, B.: On the regularization of chattering executions in real time simulation of hybrid systems. In: 11th Baltic Young Scientists Conference, Tallinn, Estonia, p. 49, July 2015. https://hal.archives-ouvertes.fr/hal-01246853
Aljarbouh, A., Caillaud, B.: Robust simulation for hybrid systems: chattering path avoidance. In: Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), Linköping University, Sweden, 7–9 October 2015, pp. 175–185, No. 119. Linköping University Electronic Press, Linköpings universitet (2015)
Aljarbouh, A., Caillaud, B.: Chattering-free simulation of hybrid dynamical systems with the function mock-up interface 2.0. In: Proceedings of the First Japanese Modelica Conferences, Tokyo, Japan, 23–24 May 2016. Linköping University Electronic Press, Linköpings universitet (2016)
Aljarbouh, A., Zeng, Y., Duracz, A., Caillaud, B., Taha, W.: Chattering-free simulation for hybrid dynamical systems semantics and prototype implementation. In: 2016 IEEE International Conference on Computational Science and Engineering, CSE 2016, and IEEE International Conference on Embedded and Ubiquitous Computing, EUC 2016, and 15th International Symposium on Distributed Computing and Applications for Business Engineering, DCABES 2016, Paris, France, 24–26 August 2016, pp. 412–422 (2016). https://doi.org/10.1109/CSE-EUC-DCABES.2016.217
ALM-PLM (2015). http://polarion.com
Baskar, L.D., De Schutter, B., Hellendoorn, J., Papp, Z.: Traffic control and intelligent vehicle highway systems: a survey. IET Intel. Transp. Syst. 5(1), 38–52 (2011)
Basma, F., Tachwali, Y., Refai, H.H.: Intersection collision avoidance system using infrastructure communication. In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 422–427. IEEE, Washington, DC (2011)
Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18
De Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithms 37(1–4), 147–158 (2004)
Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_5
Duracz, A., Eriksson, H., Bartha, F.Á., Zeng, Y., Xu, F., Taha, W.: Using rigorous simulation to support ISO 26262 hazard analysis and risk assessment. In: 2015 IEEE 12th International Conference on Embedded Software and Systems (ICESS), pp. 1093–1096. IEEE, August 2015
Duracz, J., Farjudian, A., Konečný, M., Taha, W.: Function interval arithmetic. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 677–684. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2_101
EU Regulation No. 347/2012: Type-approval requirements for certain categories of motor vehicles with regard to advanced emergency braking systems (2012)
Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30
Henzinger, T.A.: The theory of hybrid automata. In: Logic in Computer Science, pp. 278–292. IEEE Computer Society, New Brunswick (1996)
ISO26262: Road vehicles - functional safety (2011)
Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now formally verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_6
Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 4, 4 (2003)
Masood, J., Philippsen, R., Duracz, J., Taha, W., Eriksson, H., Grante, C.: Domain analysis for standardised functional safety: a case study on design-time verification of automatic emergency braking. In: International Federation of Automotive Engineering Societies 2014 World Automotive Congress, Maastricht, The Netherlands, 2–6 June 2014. FISITA (2014)
Medini analyze (2015). http://ikv.de
Mosterman, P.J.: An overview of hybrid simulation phenomena and their support by simulation packages. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 165–177. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48983-5_17
Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)
Nedialkov, N.S., Von Mohrenschildt, M.: Rigorous simulation of hybrid dynamic systems with symbolic and interval methods. In: 2002 Proceedings of the American Control Conference, vol. 1, pp. 140–147. IEEE (2002)
Prover (2015). http://prover.com
Ramdani, N., Nedialkov, N.S.: Computing reachable sets for uncertain nonlinear hybrid systems using interval constraint-propagation techniques. Nonlinear Anal. Hybrid Syst. 5(2), 149–162 (2011)
RiskCAT (2015). http://cats-tools.de
SCADE design verifier (2015). http://esterel-technologies.com
Simulink design verifier (2015). http://mathworks.com
SOX2 (2015). http://enco-software.com
Taha, W.: Acumen: an open-source testbed for cyber-physical systems research. In: Mandler, B., et al. (eds.) IoT360 2015. LNICST, vol. 169, pp. 118–130. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47063-4_11
Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations (2011)
Ueda, K., Matsumoto, S.: Hyrose: a symbolic simulator of the hybrid constraint language HydLa. In: Computer Software, vol. 30. Citeseer (2013)
Zhang, Y., Antonsson, E.K., Grote, K.: A new threat assessment measure for collision avoidance systems. In: 2006 IEEE Intelligent Transportation Systems Conference, ITSC 2006, pp. 968–975. IEEE, September 2006. https://doi.org/10.1109/ITSC.2006.1706870
Acknowledgments
This work is supported by US National Science Foundation award CPS-1136099, Swedish Knowledge Foundation, Center for Research on Embedded Systems (CERES), VINNOVA (Dnr. 2011-01819), the European University of Brittany, and the Regional Council of Brittany.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix A
Appendix A
Figure 8 demonstrates the finite state machine of the ICA’s system with all possible transitions between modes.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Duracz, A. et al. (2020). Advanced Hazard Analysis and Risk Assessment in the ISO 26262 Functional Safety Standard Using Rigorous Simulation. In: Chamberlain, R., Edin Grimheden, M., Taha, W. (eds) Cyber Physical Systems. Model-Based Design. CyPhy WESE 2019 2019. Lecture Notes in Computer Science(), vol 11971. Springer, Cham. https://doi.org/10.1007/978-3-030-41131-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-41131-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41130-5
Online ISBN: 978-3-030-41131-2
eBook Packages: Computer ScienceComputer Science (R0)