Skip to main content

The Fermat-Torricelli Problem of Triangles on the Sphere with Euclidean Metric: A Symbolic Solution with Maple

  • Conference paper
  • First Online:
Maple in Mathematics Education and Research (MC 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1125))

Included in the following conference series:

Abstract

The Fermat-Torricelli problem of triangles on the sphere under Euclidean metric asks to find the optimal point P on the sphere \(S^2\) for three given points ABC on \(S^2\), so that the sum of the Euclidean distances \(L=PA+PB+PC\) from that point P to the three vertices is minimal (or maximal). In this paper we introduce a solution to this problem done with help of the symbolic computation software Maple and interpolation of implicit function, where the minimal and the maximal sum of the distances are expressed by same polynomial f(Labc) of degree 12 with \(a=BC, b=CA, c=AB\).

Support by the Chinese National Natural Science Foundation (11471209 and 11501352).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandrescu, D.-O.: A characterization of the Fermat point in Hilbert spaces. Mediterr. J. Math. 10(3), 1509–1525 (2013)

    Article  MathSciNet  Google Scholar 

  2. Blumenthal, L.F.: Theory and Application of Distance Geometry, 2nd edn. Chelsea Publishing Company, New York (1970)

    MATH  Google Scholar 

  3. Cayley, A.: A theorem in the geometry of position. Camb. Math. J. 2, 267–271 (1841)

    Google Scholar 

  4. Chen, Z.: The Fermat-Torricelli problem on surfaces. Appl. Math. J. Chin. Univ. 31(3), 362–366 (2016)

    Article  MathSciNet  Google Scholar 

  5. Chionh, E.-W., Zhang, M., Goldman, R.: Fast computation of the Bezout and Dixon resultant matrices. J. Symb. Comput. 33(1), 13–29 (2002)

    Article  MathSciNet  Google Scholar 

  6. Cut The Knot. https://www.cut-the-knot.org/Generalization/fermat_point.shtml. Accessed 6 Sept 2019

  7. Cuyt, A., Lee, W.S.: Sparse interpolation of multivariate rational functions. Theor. Comput. Sci. 412(16), 1445–1456 (2011)

    Article  MathSciNet  Google Scholar 

  8. Dalla, L.: A note on the Fermat-Torricelli point of a d-simplex. J. Geom. 70, 38–43 (2001)

    Article  MathSciNet  Google Scholar 

  9. Drezner, Z., Plastria, F.: In Memoriam Andrew (Andy) Vazsonyi: 1916–2003. Ann. Oper. Res. 167, 1–6 (2009). https://doi.org/10.1007/s10479-009-0523-6

    Article  MathSciNet  Google Scholar 

  10. Du, D.-Z., Hwang, F.K.: A proof of the Gilbert-Pollak conjecture. Algorithmica 7, 121–135 (1992)

    Article  MathSciNet  Google Scholar 

  11. Œuvres de Fermat. Paris: Gauthier-Villars et fils (1891–1896)

    Google Scholar 

  12. Fasbender, E.: Über die gleichseitigen Dreiecke, welche um ein gegebenes Dreieck gelegt werden können. J. Reine Angew. Math. 30, 230–231 (1846)

    MathSciNet  Google Scholar 

  13. Ghalich, K., Hajja, M.: The Fermat point of a spherical triangle. Math. Gazette 80(489), 561–564 (1996)

    Article  Google Scholar 

  14. Gilbert, E., Pollak, H.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968)

    Article  MathSciNet  Google Scholar 

  15. Guo, X., Leng, T., Zeng, Z.: The Fermat-Torricelli problem on sphere with Euclidean metric. J. Syst. Sci. Complex. 38(12), 1376–1392 (2018). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  16. Johnson, R.A.: Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle, pp. 221–222. Houghton Mifflin, Boston (1929)

    Google Scholar 

  17. Kai, H.: Rational interpolation and its Ill-conditioned property. In: Wang, D., Zhi, L. (eds.) Symbolic-Numeric Computation. Trends in Mathematics, pp. 47–53. Birkhäuser, Basel (2007)

    Chapter  Google Scholar 

  18. Kaltofen, E., Yang, Z.: On exact and approximate interpolation of sparse rational functions. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 203–210 (2007)

    Google Scholar 

  19. Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using Dixon resultants. In: Proceeding ISSAC 1994 (Proceedings of the International Symposium on Symbolic and Algebraic Computation), pp. 99–107 (1994)

    Google Scholar 

  20. Katz, I., Cooper, L.: Optimal location on sphere. Comput. Math. Appl. 6(2), 175–196 (1980)

    Article  MathSciNet  Google Scholar 

  21. Kuhn, H.: Steiner’s problem revisited. In: Dantzig, G.B., Eaves, B.C. (eds.) Studies in Optimization. Studies in Mathematics, vol. 10, pp. 52–70. Mathematical Association of America, Washington, DC (1974)

    Google Scholar 

  22. Kupitz, Y., Martini, H.: The Fermat-Torricelli point and isosceles tetrahedra. J. Geom. 49(1–2), 150–162 (1994)

    Article  MathSciNet  Google Scholar 

  23. Kupitz, Y., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli problem. In: Básrásny, I., Böröczky, K. (eds.) Intuitive Geometry. Bolyai Society Mathematical Studies 1995, vol. 6, pp. 55–127. János Bolyai Mathematical Society, Budapest (1995)

    Google Scholar 

  24. Launhardt, W.: Kommercielle Tracirung der Verkehrswege. Hannover (1872)

    Google Scholar 

  25. Saxena, T.; Efficient variable elimination using resultants. Ph.D. thesis, State University of New York at Albany, Albany (1996)

    Google Scholar 

  26. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)

    Article  MathSciNet  Google Scholar 

  27. Tang, M.: Polynomial algebraic algorithms and their applications based on sparse interpolation. Ph.D. thesis, East China Normal University, Shanghai (2017)

    Google Scholar 

  28. Tang, M., Yang, Z., Zeng, Z.: Resultant elimination via implicit equation interpolation. J. Syst. Sci. Complex. 29(5), 1411–1435 (2016)

    Article  MathSciNet  Google Scholar 

  29. Weber, A.: Über den Standort der Industrien, Teil I: Reine Theorie des Standorts. J.C.B. Mohr, Tübingen (1909). English ed. by C.J. Friedrichs, University of Chicago Press (1929)

    Google Scholar 

  30. Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnés est minimu. Tôhoku Math. J. 43, 355–386 (1937)

    MATH  Google Scholar 

  31. Wikipedia: Fermat point - Wikipedia. https://en.wikipedia.org/wiki/Fermat_point. Accessed 4 Apr 2019

  32. Zachos, A.: Exact location of the weighted Fermat-Torricelli point on flat surfaces of revolution. Results Math. 65(1–2), 167–179 (2014)

    Article  MathSciNet  Google Scholar 

  33. Zachos, A.: Hyperbolic median and its applications. In: International Conference “Differential Geometry and Dynamical Systems”, pp. 84–89 (2016)

    Google Scholar 

  34. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5_73

    Chapter  Google Scholar 

  35. Zuo, Q., Lin, B.: The Fermat point of finite points in the metric space. Math. J. 17(3), 359–364 (1997). (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbing Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, X., Leng, T., Zeng, Z. (2020). The Fermat-Torricelli Problem of Triangles on the Sphere with Euclidean Metric: A Symbolic Solution with Maple. In: Gerhard, J., Kotsireas, I. (eds) Maple in Mathematics Education and Research. MC 2019. Communications in Computer and Information Science, vol 1125. Springer, Cham. https://doi.org/10.1007/978-3-030-41258-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41258-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41257-9

  • Online ISBN: 978-3-030-41258-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics