Abstract
This paper explores the use of convolutional LSTMs to simultaneously learn spatial- and temporal-information in videos. A deep network of convolutional LSTMs allows the model to access the entire range of temporal information at all spatial scales. We describe our experiments involving convolutional LSTMs for lipreading that demonstrate the model is capable of selectively choosing which spatiotemporal scales are most relevant for a particular dataset. The proposed deep architecture holds promise in other applications where spatiotemporal features play a vital role without having to specifically cater the design of the network for the particular spatiotemporal features existent within the problem. Our model has comparable performance with the current state of the art achieving 83.4% on the Lip Reading in the Wild (LRW) dataset. Additional experiments indicate convolutional LSTMs may be particularly data hungry considering the large performance increases when fine-tuning on LRW after pretraining on larger datasets like LRS2 (85.2%) and LRS3-TED (87.1%). However, a sensitivity analysis providing insight on the relevant spatiotemporal temporal features allows certain convolutional LSTM layers to be replaced with 2D convolutions decreasing computational cost without performance degradation indicating their usefulness in accelerating the architecture design process when approaching new problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afouras, T., Chung, J.S., Senior, A., Vinyals, O., Zisserman, A.: Deep audio-visual speech recognition. arXiv e-prints, September 2018
Afouras, T., Chung, J.S., Zisserman, A.: Deep lip reading: a comparison of models and an online application. arXiv e-prints, June 2018
Afouras, T., Chung, J.S., Zisserman, A.: LRS3-TED: a large-scale dataset for visual speech recognition. arXiv e-prints, September 2018
Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning (2009)
Bian, Y., et al.: Revisiting the effectiveness of off-the-shelf temporal modeling approaches for large-scale video classification. CoRR abs/1708.03805 (2017)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4733 (2017)
Chung, J.S., Senior, A., Vinyals, O., Zisserman, A.: Lip reading sentences in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Chung, J.S., Zisserman, A.: Lip reading in the wild. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10112, pp. 87–103. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54184-6_6
Chung, J.S., Zisserman, A.: Lip reading in profile. In: British Machine Vision Conference (2017)
Conneau, A., Schwenk, H., Barrault, L., LeCun, Y.: Very deep convolutional networks for natural language processing. CoRR abs/1606.01781 (2016)
Cotterell, R., Mielke, S.J., Eisner, J., Roark, B.: Are all languages equally hard to language-model? In: NAACL-HLT (2018)
Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 369–376 (2006)
Hanson, A., Pnvr, K., Krishnagopal, S., Davis, L.: Bidirectional convolutional LSTM for the detection of violence in videos. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11130, pp. 280–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11012-3_24
Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and imagenet? CoRR abs/1711.09577 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of International Computer Vision and Pattern Recognition (CVPR 2014) (2014)
Kay, W., et al.: The kinetics human action video dataset. CoRR abs/1705.06950 (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)
Luo, W., Li, Y., Urtasun, R., Zemel, R.S.: Understanding the effective receptive field in deep convolutional neural networks. CoRR abs/1701.04128 (2017)
Ng, J.Y.H., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: Computer Vision and Pattern Recognition (2015)
Pascanu, R., Mikolov, T., Bengio, Y.: Understanding the exploding gradient problem. CoRR abs/1211.5063 (2012)
Paszke, A., et al.: Automatic differentiation in pytorch (2017)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. CoRR abs/1506.04214 (2015)
Shillingford, B., et al.: Large-scale visual speech recognition. CoRR abs/1807.05162 (2018)
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 568–576. Curran Associates, Inc. (2014)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Stafylakis, T., Khan, M.H., Tzimiropoulos, G.: Pushing the boundaries of audiovisual word recognition using residual networks and LSTMs. CoRR abs/1811.01194 (2018)
Stafylakis, T., Tzimiropoulos, G.: Combining residual networks with LSTMs for lipreading. CoRR abs/1703.04105 (2017)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 3104–3112. Curran Associates, Inc. (2014)
Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. CoRR abs/1602.07261 (2016)
Szegedy, C., et al.: Going deeper with convolutions (2015)
Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: C3D: generic features for video analysis. CoRR abs/1412.0767 (2014)
Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017)
Yang, Z., Yang, D., Dyer, C., He, X., Smola, A.J., Hovy, E.H.: Hierarchical attention networks for document classification. In: HLT-NAACL (2016)
Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. CoRR abs/1409.2329 (2014)
Zhang, L., Zhu, G., Shen, P., Song, J.: Learning spatiotemporal features using 3DCNN and convolutional LSTM for gesture recognition, pp. 3120–3128, October 2017. https://doi.org/10.1109/ICCVW.2017.369
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Courtney, L., Sreenivas, R. (2020). Using Deep Convolutional LSTM Networks for Learning Spatiotemporal Features. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12047. Springer, Cham. https://doi.org/10.1007/978-3-030-41299-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-41299-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41298-2
Online ISBN: 978-3-030-41299-9
eBook Packages: Computer ScienceComputer Science (R0)