Skip to main content

Early Diagnosis of Alzheimer’s Disease Based on Selective Kernel Network with Spatial Attention

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12047))

Included in the following conference series:

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder which leads to memory and behaviour impairment. Early discovery and diagnosis can delay the progress of this disease. In this paper, we propose a new deep learning method called selective kernel network with attention for early diagnosis of AD using magnetic resonance imaging. Generally, deep learning methods for high-accuracy recognition are based on structure of deep neural networks by stacking a myriad of convolutional layers in the model. In this paper, the structure of SKANet is constructed similarly to that of ResNeXt by repeating residual blocks with the same topology and group convolution for saving computational costs. Different from ResNeXt, the primary convolution is replaced by using selective kernel convolution to adaptively adjust the receptive field based on imported information. Then, attention mechanism is added to the bottom of the block to emphasize on important features and suppress unnecessary ones for more accurate representation of the network. The block is termed as selective kernel with attention block that consists of a sequence of operations followed by the order: a convolution with kernel size \(1\times 1\), a selective kernel convolution, a convolution with kernel size \(1\times 1\), and spatial attention mechanism. The effectiveness of this proposed model is verified based on the Alzheimer’s Disease Neuroimaging Initiative dataset. Our experimental results show superiority of the proposed model for the early diagnosis of AD. The classification accuracy of AD and mild cognitive impairment reaches up to \(98.82\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D.: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage 145, 137–165 (2017)

    Article  Google Scholar 

  2. Arribas, J., Calhoun, V., Adali, T.: A automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data. IEEE Trans. Bio-med. Eng. 57(12), 2850–2860 (2010)

    Article  Google Scholar 

  3. Brookmeyer, R., Johnson, E., Ziegler-Graham, K.: Forecasting the global burden of Alzheimer’s disease. J. Alzheimers Assoc. 3(3), 186–191 (2007)

    Article  Google Scholar 

  4. Billones, D., Demetria, D., Hostallero, D.: DemNet: a convolutional neural network for the detection of Alzheimer’s disease and mild cognitive impairment. In: TENCON. IEEE, Singapore (2016)

    Google Scholar 

  5. Cheng, B., Zhang, D., Chen, S., Shen, D.: Predicting clinical scores using semi-supervised multimodal relevance vector regression. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds.) MLMI 2011. LNCS, vol. 7009, pp. 241–248. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24319-6_30

    Chapter  Google Scholar 

  6. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR. IEEE, Piscataway (2016)

    Google Scholar 

  7. Chyzhykand, D., Grana, M., Savio, A., Maiora, J.: Hybrid dendritic computing with kernel-LICA applied to Alzheimer’s disease detection in MRI. Neurocomputing 75(1), 72–77 (2012)

    Article  Google Scholar 

  8. Cuingnet, R., Gerardin, E., Tessieras, J.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2011)

    Article  Google Scholar 

  9. Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M.: The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6(2), 67–77 (2010)

    Article  Google Scholar 

  10. Gupta, A., Ayhan, M., Maida, A.: Natural image bases to represent neuroimaging data. In: ICML 2013, USA, pp. 987–994 (2013)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE, Piscataway (2016)

    Google Scholar 

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141. IEEE, Piscataway (2018)

    Google Scholar 

  13. Huang, G., Liu, Z., Laurens, M.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708. IEEE, Piscataway (2017)

    Google Scholar 

  14. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  15. Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001)

    Article  Google Scholar 

  16. Ji, H., Liu, Z., Yan, W., Klette, R.: Early diagnosis of Alzheimer’s disease using deep learning. In: ICCCV, Korea (2019)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  18. Larochelle, H., Hinton, G.: Learning to combine foveal glimpses with a third-order Boltzmann machine. In: NIPS (2010)

    Google Scholar 

  19. Lecun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: CVPR, pp. 510–519. IEEE, Piscataway (2019)

    Google Scholar 

  21. Lian, C., Liu, M., Zhang, J., Shen, D.: Hierarchical fully convolution network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. PAMI 12, 1–14 (2018)

    Google Scholar 

  22. Litjens, G., Kooi, T., Bejnordi, B., Setio, A., Ciompi, F., Ghafoorian, M.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  23. Liu, F., Wee, C., Chen, H., Shen, D.: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification. NeuroImage 84, 466–475 (2014)

    Article  Google Scholar 

  24. Liu, M., Zhang, D., Chen, S., Xue, H.: Joint binary classifier learning for ECOC-based multi-class classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2335–2341 (2016)

    Article  Google Scholar 

  25. Liu, M., Zhang, D., Shen, D.: View-centralized multi-atlas classification for Alzheimer’s disease diagnosis. Hum. Brain Mapp. 36(5), 1847–1865 (2015)

    Article  Google Scholar 

  26. Liu, Z., Xu, T., Ma, C., Yang, H.: T-test based Alzheimer’s disease diagnosis with multi-feature in MRIs. Multimedia Tools Appl. 77(22), 29687–29703 (2018)

    Article  Google Scholar 

  27. Lu, J., Yan, W., Nguyen, M.: Human behaviour recognition using deep learning. In: AVSS (2018)

    Google Scholar 

  28. Mnih, V., Heess, N., Graves, A.: Recurrent models of visual attention. In: NIPS (2014)

    Google Scholar 

  29. Ortiz, A., Munilla, J., Gorriz, M.: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. Int. J. Neural Syst. 26(7), 1650025 (2016)

    Article  Google Scholar 

  30. Ortiz, A., Munilla, J., Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J.: Learning longitudinal MRI patterns by SICE and deep learning: assessing the Alzheimer’s disease progression. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 413–424. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_36

    Chapter  Google Scholar 

  31. Rathore, S., Habes, M., Iftikhar, M.A., Shacklett, A., Davatzikos, C.: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage 155, 530–548 (2017)

    Article  Google Scholar 

  32. Sarraf, S., Tofighi, G.: Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data. In: Future Technologies Conference, pp. 816–820. IEEE, San Francisco (2016)

    Google Scholar 

  33. Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21(11), 1421–1439 (2002)

    Article  Google Scholar 

  34. Spillmann, L., Dresp-Langley, B., Tseng, C.: Beyond the classical receptive field: the effect of contextual stimuli. J. Vis. 15(9), 7 (2015)

    Article  Google Scholar 

  35. Suk, H., Lee, S., Shen, D.: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct. Funct. 221(15), 2569–2587 (2016)

    Article  Google Scholar 

  36. Suk, H., Lee, S., Shen, D.: Deep ensemble learning of sparse regression models for brain disease diagnosis. Med. Image Anal. 37, 101–113 (2017)

    Article  Google Scholar 

  37. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9. IEEE, Piscataway (2015)

    Google Scholar 

  38. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826. IEEE, Piscataway (2016)

    Google Scholar 

  39. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: AAAI, San Francisco (2017)

    Google Scholar 

  40. Wang, F., et al.: Residual attention network for image classification. In: CVPR, pp. 3156–3164. IEEE, Piscataway (2017)

    Google Scholar 

  41. Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 1492–1500. IEEE, Piscataway (2017)

    Google Scholar 

  42. You, Q., Jin, H., Wang, Z., Fang, C., Luo, J.: Image captioning with semantic attention. In: CVPR, pp. 4651–4659. IEEE, USA (2016)

    Google Scholar 

  43. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

Download references

Acknowledgments

This project is supported by the study abroad program for graduate student of the Guilin University of Electronic Technology China and the National Natural Science Foundation of China under grants (61866009). The data used in this paper was downloaded from Alzheimer’s Disease Neuroimaging Initiative (ADNI) (adni.loni.usc.edu). We are grateful to everyone who provided their support for this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qi Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, H., Liu, Z., Yan, W.Q., Klette, R. (2020). Early Diagnosis of Alzheimer’s Disease Based on Selective Kernel Network with Spatial Attention. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12047. Springer, Cham. https://doi.org/10.1007/978-3-030-41299-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41299-9_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41298-2

  • Online ISBN: 978-3-030-41299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics