Skip to main content

Denoising and Inpainting of Sea Surface Temperature Image with Adversarial Physical Model Loss

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12046))

Included in the following conference series:

Abstract

This paper proposes a new approach for meteorology; estimating sea surface temperatures (SSTs) by using deep learning. SSTs are essential information for ocean-related industries but are hard to measure. Although multi-spectral imaging sensors on meteorological satellites are used for measuring SSTs over a wide area, they cannot measure sea temperature in regions covered by clouds, so most of the temperature data will be partially occluded. In meteorology, data assimilation with physics-based simulation is used for interpolating occluded SSTs, and can generate physically-correct SSTs that match observations by satellites, but it requires huge computational cost. We propose a low-cost learning-based method using pre-computed data-assimilation SSTs. Our restoration model employs adversarial physical model loss that evaluates physical correctness of generated SST images, and restores SST images in real time. Experimental results with satellite images show that the proposed method can reconstruct physically-correct SST images without occlusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agostinelli, F., Anderson, M.R., Lee, H.: Adaptive multi-column deep neural networks with application to robust image denoising. In: Advances in Neural Information Processing Systems, pp. 1493–1501 (2013)

    Google Scholar 

  2. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424 (2000)

    Google Scholar 

  3. Cai, N., Su, Z., Lin, Z., Wang, H., Yang, Z., Ling, B.W.K.: Blind inpainting using the fully convolutional neural network. Vis. Comput. 33(2), 249–261 (2017)

    Article  Google Scholar 

  4. Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Article  Google Scholar 

  5. Demir, U., Unal, G.: Patch-based image inpainting with generative adversarial networks. arXiv preprint arXiv:1803.07422 (2018)

  6. Ditri, A., Minnett, P., Liu, Y., Kilpatrick, K., Kumar, A.: The accuracies of himawari-8 and mtsat-2 sea-surface temperatures in the tropical Western Pacific ocean. Remote Sens. 10(2), 212 (2018). https://doi.org/10.3390/rs10020212

    Article  Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (Proc. of SIGGRAPH 2017) 36(4), 107:1–107:14 (2017)

    Google Scholar 

  9. Ishida, H., Nakajima, T.Y.: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. J. Geophys. Res. (Atmos.) 114 (2009)

    Google Scholar 

  10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Conference on Computer Vision and Pattern Recognition, pp. 5967–5976 (2017)

    Google Scholar 

  11. Mao, X.J., Shen, C., Yang, Y.B.: Image denoising using very deep fully convolutional encoder-decoder networks with symmetric skip connections. In: Advances in Neural Information Processing Systems, pp. 2810–2818 (2016)

    Google Scholar 

  12. McNally, A., Watts, P.: A cloud detection algorithm for high-spectral-resolution infrared sounders. Q. J. R. Meteorol. Soc. 129(595), 3411–3423 (2003)

    Article  Google Scholar 

  13. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  14. Shibata, S., Iiyama, M., Hashimoto, A., Minoh, M.: Restoration of sea surface temperature satellite images using a partially occluded training set. In: International Conference on Pattern Recognition (2018)

    Google Scholar 

  15. Song, Y., Yang, C., Lin, Z., Li, H., Huang, Q., Kuo, C.J.: Image inpainting using multi-scale feature image translation. CoRR abs/1711.08590 (2017). http://arxiv.org/abs/1711.08590

  16. Usui, N., Ishizaki, S., Fujii, Y., Tsujino, H., Yasuda, T., Kamachi, M.: Meteorological research institute multivariate ocean variational estimaion (move) system: some early results. Adv. Space Res. 37(4), 806–822 (2006)

    Article  Google Scholar 

  17. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems, pp. 341–349 (2012)

    Google Scholar 

  18. Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image inpainting using multi-scale neural patch synthesis. In: Conference on Computer Vision and Pattern Recognition, pp. 4076–4084 (2017)

    Google Scholar 

  19. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. CoRR abs/1801.07892 (2018). http://arxiv.org/abs/1801.07892

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Hirahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirahara, N., Sonogashira, M., Kasahara, H., Iiyama, M. (2020). Denoising and Inpainting of Sea Surface Temperature Image with Adversarial Physical Model Loss. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41404-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41403-0

  • Online ISBN: 978-3-030-41404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics