Abstract
This paper proposes a new approach for meteorology; estimating sea surface temperatures (SSTs) by using deep learning. SSTs are essential information for ocean-related industries but are hard to measure. Although multi-spectral imaging sensors on meteorological satellites are used for measuring SSTs over a wide area, they cannot measure sea temperature in regions covered by clouds, so most of the temperature data will be partially occluded. In meteorology, data assimilation with physics-based simulation is used for interpolating occluded SSTs, and can generate physically-correct SSTs that match observations by satellites, but it requires huge computational cost. We propose a low-cost learning-based method using pre-computed data-assimilation SSTs. Our restoration model employs adversarial physical model loss that evaluates physical correctness of generated SST images, and restores SST images in real time. Experimental results with satellite images show that the proposed method can reconstruct physically-correct SST images without occlusions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agostinelli, F., Anderson, M.R., Lee, H.: Adaptive multi-column deep neural networks with application to robust image denoising. In: Advances in Neural Information Processing Systems, pp. 1493–1501 (2013)
Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424 (2000)
Cai, N., Su, Z., Lin, Z., Wang, H., Yang, Z., Ling, B.W.K.: Blind inpainting using the fully convolutional neural network. Vis. Comput. 33(2), 249–261 (2017)
Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)
Demir, U., Unal, G.: Patch-based image inpainting with generative adversarial networks. arXiv preprint arXiv:1803.07422 (2018)
Ditri, A., Minnett, P., Liu, Y., Kilpatrick, K., Kumar, A.: The accuracies of himawari-8 and mtsat-2 sea-surface temperatures in the tropical Western Pacific ocean. Remote Sens. 10(2), 212 (2018). https://doi.org/10.3390/rs10020212
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (Proc. of SIGGRAPH 2017) 36(4), 107:1–107:14 (2017)
Ishida, H., Nakajima, T.Y.: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. J. Geophys. Res. (Atmos.) 114 (2009)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Conference on Computer Vision and Pattern Recognition, pp. 5967–5976 (2017)
Mao, X.J., Shen, C., Yang, Y.B.: Image denoising using very deep fully convolutional encoder-decoder networks with symmetric skip connections. In: Advances in Neural Information Processing Systems, pp. 2810–2818 (2016)
McNally, A., Watts, P.: A cloud detection algorithm for high-spectral-resolution infrared sounders. Q. J. R. Meteorol. Soc. 129(595), 3411–3423 (2003)
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)
Shibata, S., Iiyama, M., Hashimoto, A., Minoh, M.: Restoration of sea surface temperature satellite images using a partially occluded training set. In: International Conference on Pattern Recognition (2018)
Song, Y., Yang, C., Lin, Z., Li, H., Huang, Q., Kuo, C.J.: Image inpainting using multi-scale feature image translation. CoRR abs/1711.08590 (2017). http://arxiv.org/abs/1711.08590
Usui, N., Ishizaki, S., Fujii, Y., Tsujino, H., Yasuda, T., Kamachi, M.: Meteorological research institute multivariate ocean variational estimaion (move) system: some early results. Adv. Space Res. 37(4), 806–822 (2006)
Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems, pp. 341–349 (2012)
Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image inpainting using multi-scale neural patch synthesis. In: Conference on Computer Vision and Pattern Recognition, pp. 4076–4084 (2017)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. CoRR abs/1801.07892 (2018). http://arxiv.org/abs/1801.07892
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Hirahara, N., Sonogashira, M., Kasahara, H., Iiyama, M. (2020). Denoising and Inpainting of Sea Surface Temperature Image with Adversarial Physical Model Loss. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-41404-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41403-0
Online ISBN: 978-3-030-41404-7
eBook Packages: Computer ScienceComputer Science (R0)