Skip to main content

A Factorization Strategy for Tensor Robust PCA

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12046))

Included in the following conference series:

Abstract

Many kinds of real-world data, e.g., color images, videos, etc., are represented by tensors and may often be corrupted by outliers. Tensor robust principal component analysis (TRPCA) servers as a tensorial modification of the fundamental principal component analysis (PCA) which performs well in the presence of outliers. The recently proposed TRPCA model [12] based on tubal nuclear norm (TNN) has attracted much attention due to its superiority in many applications. However, TNN is computationally expensive, limiting the application of TRPCA for large tensors. To address this issue, we first propose a new TRPCA model by adopting a factorization strategy within the framework of tensor singular value decomposition (t-SVD). An algorithm based on the non-convex augmented Lagrangian method (ALM) is developed with convergence guarantee. Effectiveness and efficiency of the proposed algorithm is demonstrated through extensive experiments on both synthetic and real datasets.

This work is partially supported by the National Natural Science Foundation of China [Grant Nos. 61872188, U1713208, 61602244, 61672287, 61702262, 61773215, 61703209].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The supplementary material is available at https://github.com/pingzaiwang/hitensor/blob/master/supp-ACPR2019-25.pdf.

  2. 2.

    Following [12], when saying “TRPCA”, we refer to the TNN-based TRPCA (8).

  3. 3.

    http://www.mrt.kit.edu/z/publ/download/velodynetracking/dataset.html.

References

  1. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? JACM 58(3), 11 (2011)

    Article  MathSciNet  Google Scholar 

  2. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford University (2002)

    Google Scholar 

  3. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing, vol. 1. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  4. Friedland, S., Lim, L.: Nuclear norm of higher-order tensors. Math. Comput. 87(311), 1255–1281 (2017)

    Article  MathSciNet  Google Scholar 

  5. Goldfarb, D., Qin, Z.: Robust low-rank tensor recovery: models and algorithms. SIAM J. Matrix Anal. Appl. 35(1), 225–253 (2014)

    Article  MathSciNet  Google Scholar 

  6. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis (1970)

    Google Scholar 

  7. Hillar, C.J., Lim, L.: Most tensor problems are NP-hard. J. ACM 60(6), 45 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Huang, B., Mu, C., Goldfarb, D., Wright, J.: Provable models for robust low-rank tensor completion. Pac. J. Optim. 11(2), 339–364 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)

    Article  MathSciNet  Google Scholar 

  10. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE TPAMI 35(1), 208–220 (2013)

    Article  Google Scholar 

  11. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization. In: CVPR, pp. 5249–5257 (2016)

    Google Scholar 

  12. Lu, C., Feng, J., Liu, W., Lin, Z., Yan, S., et al.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE TPAMI (2019)

    Google Scholar 

  13. Moosmann, F., Stiller, C.: Joint self-localization and tracking of generic objects in 3D range data. In: ICRA, pp. 1138–1144. Karlsruhe, Germany, May 2013

    Google Scholar 

  14. Romera-Paredes, B., Pontil, M.: A new convex relaxation for tensor completion. In: NIPS, pp. 2967–2975 (2013)

    Google Scholar 

  15. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  16. Wang, A., Jin, Z.: Near-optimal noisy low-tubal-rank tensor completion via singular tube thresholding. In: ICDM Workshop, pp. 553–560 (2017)

    Google Scholar 

  17. Wang, A., Lai, Z., Jin, Z.: Noisy low-tubal-rank tensor completion. Neurocomputing 330, 267–279 (2019)

    Article  Google Scholar 

  18. Wang, A., Wei, D., Wang, B., Jin, Z.: Noisy low-tubal-rank tensor completion through iterative singular tube thresholding. IEEE Access 6, 35112–35128 (2018)

    Article  Google Scholar 

  19. Wu, T., Bajwa, W.U.: A low tensor-rank representation approach for clustering of imaging data. IEEE Signal Process. Lett. 25(8), 1196–1200 (2018)

    Article  Google Scholar 

  20. Xie, Y., Tao, D., Zhang, W., Liu, Y., Zhang, L., Qu, Y.: On unifying multi-view self-representations for clustering by tensor multi-rank minimization. Int. J. Comput. Vis. 126(11), 1157–1179 (2018)

    Article  MathSciNet  Google Scholar 

  21. Xu, Y., Hao, R., Yin, W., Su, Z.: Parallel matrix factorization for low-rank tensor completion. Inverse Prob. Imaging 9(2), 601–624 (2015)

    Article  MathSciNet  Google Scholar 

  22. Zhang, Z., Aeron, S.: Exact tensor completion using T-SVD. IEEE TSP 65(6), 1511–1526 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: CVPR, pp. 3842–3849 (2014)

    Google Scholar 

  24. Zhou, P., Feng, J.: Outlier-robust tensor PCA. In: CVPR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, A., Jin, Z., Yang, J. (2020). A Factorization Strategy for Tensor Robust PCA. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41404-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41403-0

  • Online ISBN: 978-3-030-41404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics