Skip to main content

KIL: Knowledge Interactiveness Learning for Joint Depth Estimation and Semantic Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12046))

Included in the following conference series:

Abstract

Depth estimation and semantic segmentation are two important yet challenging tasks in the field of pixel-level scene understanding. Previous works often solve the two tasks as the parallel decoding/modeling process, but cannot well consider strongly correlated relationships between these tasks. In this paper, given an input image, we propose to learn knowledge interactiveness of depth estimation and semantic segmentation for jointly predicting results in an end-to-end way. Especially, the key Knowledge Interactiveness Learning (KIL) module can mine and leverage the connections/complementations of these two tasks effectively. Furthermore, the network parameters can be jointly optimized for boosting the final predictions of depth estimation and semantic segmentation with the coarse-to-fine strategy. Extensive experiments on SUN-RGBD and NYU Depth-V2 datasets demonstrate state-of-the-art performance of the proposed unified framework for both depth estimation and semantic segmentation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680 (2015)

  2. Jalali, A., Sanghavi, S., Ruan, C., Ravikumar, P.K.: A dirty model for multi-task learning. In: Advances in Neural Information Processing Systems, pp. 964–972 (2010)

    Google Scholar 

  3. Roy, A., Todorovic, S.: Monocular depth estimation using neural regression forest. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5506–5514 (2016)

    Google Scholar 

  4. Saxena, A., Sun, M., Ng, A.Y.: Make3D: learning 3d scene structure from a single still image. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 824–840 (2008)

    Article  Google Scholar 

  5. Saxena, A., Chung, S.H., Ng, A.Y.: Learning depth from single monocular images. In: Advances in Neural Information Processing Systems, pp. 1161–1168 (2006)

    Google Scholar 

  6. Li, B., Shen, C., Dai, Y., Van Den Hengel, A., He, M.: Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1119–1127 (2015)

    Google Scholar 

  7. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  8. Xu, D., Ricci, E., Ouyang, W., Wang, X., Sebe, N.: Multi-scale continuous crfs as sequential deep networks for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5354–5362 (2017)

    Google Scholar 

  9. Xu, D., Ouyang, W., Wang, X., Sebe, N.: Pad-Net: multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 675–684 (2018)

    Google Scholar 

  10. Ilea, D.E., Whelan, P.F.: Image segmentation based on the integration of colour-texture descriptors-a review. Pattern Recogn. 44(10–11), 2479–2501 (2011)

    Article  Google Scholar 

  11. Daniel, W., Remi, R., Edmond, B.: A survey of vision-based methods for action representation, segmentation and recognition. Comput. Vis. Image Understand. 115(2), 224–241 (2011)

    Article  Google Scholar 

  12. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, pp. 2366–2374 (2014)

    Google Scholar 

  13. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)

    Google Scholar 

  14. Lin, D., Chen, G., Cohen-Or, D., Heng, P.A., Huang, H.: Cascaded feature network for semantic segmentation of RGB-D images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1311–1319 (2017)

    Google Scholar 

  15. Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5162–5170 (2015)

    Google Scholar 

  16. Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2024–2039 (2015)

    Article  Google Scholar 

  17. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1925–1934 (2017)

    Google Scholar 

  18. Lin, G., Shen, C., Van Den Hengel, A., Reid, I.: Efficient piecewise training of deep structured models for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2016)

    Google Scholar 

  19. Hadsell, R., et al.: Learning long-range vision for autonomous off-road driving. J. Field Robot. 26, 120–144 (2009)

    Article  Google Scholar 

  20. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  21. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)

    Google Scholar 

  22. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 239–248 (2016)

    Google Scholar 

  23. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3994–4003 (2016)

    Google Scholar 

  24. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  25. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  26. Nath Kundu, J., Krishna Uppala, P., Pahuja, A., Venkatesh Babu, R.: AdaDepth: unsupervised content congruent adaptation for depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2656–2665 (2018)

    Google Scholar 

  27. Baxter, J.: A Bayesian/information theoretic model of learning to learn via multiple task sampling. Mach. Learn. 28(1), 7–39 (1997)

    Article  Google Scholar 

  28. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  30. Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monocular slam with learned depth prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6243–6252 (2017)

    Google Scholar 

  31. Long, M., Wang, J.: Learning multiple tasks with deep relationship networks. arXiv preprint arXiv:1506.02117 2 (2015)

  32. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  33. Wang, P., Shen, X., Lin, Z., Cohen, S., Price, B., Yuille, A.L.: Towards unified depth and semantic prediction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2800–2809 (2015)

    Google Scholar 

  34. Jarvis, R.A.: A perspective on range finding techniques for computer vision. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–5(2), 122–139 (1983)

    Article  Google Scholar 

  35. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution and tlle Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell. 721–741

    Google Scholar 

  36. Park, S.J., Hong, K.S. and Lee, S.: RDFNet: RGB-D multi-level residual feature fusion for indoor semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4980–4989 (2017)

    Google Scholar 

  37. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)

    Google Scholar 

  38. Song, S., Lichtenberg, S.P., Xiao, J.: SUN RGB-D: A RGB-D scene understanding benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 567–576 (2015)

    Google Scholar 

  39. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. J. Mach. Learn. Res. 6(Apr), 615–637 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Gebru, T., Hoffman, J., Fei-Fei, L.: Fine-grained recognition in the wild: a multi-task domain adaptation approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1349–1358 (2017)

    Google Scholar 

  41. Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R.: 3d graph neural networks for RGBD semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5199–5208 (2017)

    Google Scholar 

  42. Yang, X., Gao, Y., Luo, H., Liao, C., Cheng, K.T.: Bayesian DeNet: monocular depth prediction and frame-wise fusion with synchronized uncertainty. IEEE Trans. Multimed. 21(11), 2701–2713 (2019)

    Article  Google Scholar 

  43. Cheng, Y., Cai, R., Li, Z., Zhao, X., Huang, K.: Locality-sensitive deconvolution networks with gated fusion for RGB-D indoor semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3029–3037 (2017)

    Google Scholar 

  44. Yang, Y., Hospedales, T.M.: Trace norm regularised deep multi-task learning. arXiv preprint arXiv:1606.04038 (2016)

  45. Liu, Y., Guo, Y., Lew, M.S.: On the exploration of convolutional fusion networks for visual recognition. In: International Conference on Multimedia Modeling, pp. 277–289 (2017)

    Google Scholar 

  46. Chen, Y., Li, W., Chen, X., Gool, L.V.: Learning semantic segmentation from synthetic data: a geometrically guided input-output adaptation approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1841–1850 (2019)

    Google Scholar 

  47. Li, Z., Gan, Y., Liang, X., Yu, Y., Cheng, H., Lin, L.,: LSTM-CF: unifying context modeling and fusion with LSTMs for RGB-D scene labeling. In: European Conference on Computer Vision, pp. 541–557 (2016)

    Chapter  Google Scholar 

  48. Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., Yang, J.: Pattern-affinitive propagation across depth, surface normal and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4106–4115 (2019)

    Google Scholar 

  49. Zhang, Z., Cui, Z., Xu, C., Jie, Z., Li, X., Yang, J.: Joint task-recursive learning for semantic segmentation and depth estimation. In: Proceedings of the European Conference on Computer Vision, pp. 235–251 (2018)

    Chapter  Google Scholar 

Download references

Acknowlegdement

This work was supported by the National Natural Science Foundation of China (Grants Nos. 61972204, 61772276, 61906094), the Natural Science Foundation of Jiangsu Province (Grant No. BK20191283), the fundamental research funds for the central universities (No. 30919011232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, L., Xu, C., Cui, Z., Yang, J. (2020). KIL: Knowledge Interactiveness Learning for Joint Depth Estimation and Semantic Segmentation. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41404-7_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41403-0

  • Online ISBN: 978-3-030-41404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics