Abstract
In a virtual reality (VR) experience, the manner in which a user interacts with the virtual environment and computer generated objects in the scene greatly effects the feeling of immersion. Traditionally, VR systems use controllers as a means of facilitating interaction, with a sequence of button presses corresponding to a particular action. However, controllers do not accurately model the intuitive way to interact with a real-world object and offer limited tactile feedback. Alternatively, a physical object can be tracked and used to regulate the behaviour of a virtual object. In this chapter, we review a range of approaches which use the tracked behaviour of a physical object to control elements of the virtual environment. These virtual props have the potential to be used as a more immersive alternative to the traditional controllers. We discuss how motion capture systems and external sensors can be used to track rigid and non-rigid objects, in order to drive the motion of computer generated 3D models. We then consider two neural network based tracking solutions and explain how these can be used for transporting real objects into virtual environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrychowicz, M., et al.: Learning dexterous in-hand manipulation. CoRR arXiv:1808.00177 (2018)
Artec: 3D Object Scanner Artec Eva. https://www.artec3d.com/portable-3d-scanners/artec-eva
Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. Image Vis. Comput. 10, 145–155 (1992)
Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38
Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and applications of finite element analysis, 3rd edn. Wiley, New York (1989)
De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The mahalanobis distance. Chemometr. Intell. Lab. Syst. 50(1), 1–18 (2000)
Dou, P., Shah, S.K., Kakadiaris, I.A.: End-to-end 3D face reconstruction with deep neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017
Dreamscape: Dreamscape immersive. https://dreamscapeimmersive.com/
Elbrechter, C., Haschke, R., Ritter, H.: Bi-manual robotic paper manipulation based on real-time marker tracking and physical modelling. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1427–1432, September 2011. https://doi.org/10.1109/IROS.2011.6094742
HTC: Discover virtual reality beyond imagination. https://www.vive.com/uk/
HTC: Vive tracker. https://www.vive.com/uk/vive-tracker/
Immersive, D.: Alien zoo. https://dreamscapeimmersive.com/adventures/details/alienzoo01
Insider, V.F.: AMC and nickelodeon partner with dreamscape immersive, large scale VR experiences follow. https://www.vrfitnessinsider.com/amc-nickelodeon-partner-with-dreamscape-immersive-large-scale-vr-experiences-follow/
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)
Kanazawa, A., Kovalsky, S., Basri, R., Jacobs, D.: Learning 3D deformation of animals from 2D images. In: Computer Graphics Forum, vol. 35, pp. 365–374. Wiley Online Library (2016)
Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: Computer Vision and Pattern Recognition (CVPR) (2019)
Kausch, L., Hilsmann, A., Eisert, P.: Template-based 3D non-rigid shape estimation from monocular image sequences. In: Proceedings of the Conference on Vision, Modeling and Visualization, pp. 37–44. Eurographics Association (2017)
Leizea, I., Álvarez, H., Aguinaga, I., Borro, D.: Real-time deformation, registration and tracking of solids based on physical simulation. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 165–170. IEEE (2014)
Li, H., Yu, J., Ye, Y., Bregler, C.: Realtime facial animation with on-the-fly correctives. ACM Trans. Graph. (TOG) 32(4), 42 (2013). https://doi.org/10.1145/2461912.2462019
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 248:1–248:16 (2015). (Proc. SIGGRAPH Asia)
Microsoft: Microsoft Hololens|mixed reality technology for business. https://www.microsoft.com/en-us/hololens
Mondjar-Guerra, V., Garrido-Jurado, S., Muoz-Salinas, R., Marn-Jimnez, M.J., Medina-Carnicer, R.: Robust identification of fiducial markers in challenging conditions. Expert Syst. Appl. 93(C), 336–345 (2018). https://doi.org/10.1016/j.eswa.2017.10.032
Newcombe, R.A., Fox, D., Seitz, S.M.: Dynamicfusion: reconstruction and tracking of non-rigid scenes in real-time. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 343–352 (2015)
Oculus: Oculus rift. https://www.oculus.com/rift/
Park, Y., Lepetit, V., Woo, W.: Multiple 3D object tracking for augmented reality. In: Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 117–120. IEEE Computer Society (2008)
Paulus, C.J., Haouchine, N., Cazier, D., Cotin, S.: Augmented reality during cutting and tearing of deformable objects. In: 2015 IEEE International Symposium on Mixed and Augmented Reality, pp. 54–59. IEEE (2015)
Petit, A., Lippiello, V., Fontanelli, G.A., Siciliano, B.: Tracking elastic deformable objects with an RGB-D sensor for a pizza chef robot. Robot. Auton. Syst. 88, 187–201 (2017)
Pumarola, A., Agudo, A., Porzi, L., Sanfeliu, A., Lepetit, V., Moreno-Noguer, F.: Geometry-aware network for non-rigid shape prediction from a single view, June 2018
Rambach, J., Pagani, A., Stricker, D.: [poster] augmented things: enhancing AR applications leveraging the Internet of Things and universal 3D object tracking. In: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 103–108. IEEE (2017)
Remondino, F.: From point cloud to surface: the modeling and visualization problem. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV–5/W10, 1–11 (2003). https://doi.org/10.3929/ethz-a-004655782. ISSN 1682-1750
Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. 36(6), 245:1–245:17 (2017). https://doi.org/10.1145/3130800.3130883. (Proc. SIGGRAPH Asia)
Salzmann, M., Pilet, J., Ilic, S., Fua, P.: Surface deformation models for nonrigid 3D shape recovery. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1481–1487 (2007). https://doi.org/10.1109/TPAMI.2007.1080
Schulman, J., Lee, A., Ho, J., Abbeel, P.: Tracking deformable objects with point clouds. In: 2013 IEEE International Conference on Robotics and Automation, pp. 1130–1137. IEEE (2013)
Sridhar, S., Mueller, F., Zollhöfer, M., Casas, D., Oulasvirta, A., Theobalt, C.: Real-time joint tracking of a hand manipulating an object from RGB-D input. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 294–310. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_19
Taylor, C., McNicholas, R., Cosker, D.: VRProp-net: real-time interaction with virtual props. In: ACM SIGGRAPH 2019 Posters, SIGGRAPH 2019, pp. 31:1–31:2. ACM, New York (2019). https://doi.org/10.1145/3306214.3338548
Taylor, C., Mullanay, C., McNicholas, R., Cosker, D.: VR props: an end-to-end pipeline for transporting real objects into virtual and augmented environments. In: 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE (2019)
Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 61(3), 611–622 (1999)
Tjaden, H., Schwanecke, U., Schomer, E.: Real-time monocular pose estimation of 3D objects using temporally consistent local color histograms. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 124–132 (2017)
Tsoli, A., Argyros, A.A.: Joint 3D tracking of a deformable object in interaction with a hand. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 484–500 (2018)
Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.: Capturing hands in action using discriminative salient points and physics simulation. CoRR abs/1506.02178 (2015). http://arxiv.org/abs/1506.02178
Vicon: Motion capture systems. https://www.vicon.com/
Vicon: Origin by vicon. https://www.vicon.com/press/2018-08-13/origin-by-vicon
to VR, R.: Optitrack shows hundreds of simultaneously tracked objects in a single VR experience. https://www.roadtovr.com/optitrack-hundreds-of-tracked-objects-jenga-gdc-2019/amp/
Welch, G., Bishop, G., et al.: An Introduction to the Kalman Filter (1995)
Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)
Zhang, H., Bo, Z.H., Yong, J.H., Xu, F.: Interactionfusion: real-time reconstruction of hand poses and deformable objects in hand-object interactions. ACM Trans. Graph. 38(4), 48:1–48:11 (2019). https://doi.org/10.1145/3306346.3322998
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Taylor, C., Cosker, D. (2020). Interacting with Real Objects in Virtual Worlds. In: Magnor, M., Sorkine-Hornung, A. (eds) Real VR – Immersive Digital Reality. Lecture Notes in Computer Science(), vol 11900. Springer, Cham. https://doi.org/10.1007/978-3-030-41816-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-41816-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41815-1
Online ISBN: 978-3-030-41816-8
eBook Packages: Computer ScienceComputer Science (R0)