Abstract
Automatic diagnostic tools have been extensively implemented in medical diagnosis processes of different diseases. In this regard, breast cancer diagnosis is particularly important as it becomes one of the most dangerous diseases for women. Consequently, regular and preemptive screening for breast cancer could help initiate treatment earlier and more effectively. In this regard, hospitals and clinics are in need to a robust diagnostic tool that could provide reliable results. The accuracy of diagnostic tools is an important factor that should be taken into consideration when designing a new system. This has motivated us to develop an automatic diagnostic system combining two methodologies: Deep Feedforward Neural Networks (DFNNs) and swarm intelligence algorithms. Swarm intelligence techniques are based on Particle Swarm Optimization (PSO) as well as the Mother Tree Optimization (MTO) algorithm we proposed in the past. In order to asses the performance, in terms of accuracy, of the proposed system, we have conducted several experiments using the Wisconsin Breast Cancer Dataset (WBCD). The results show that the DFNN combined with a variant of our MTO attains a high classification performance, reaching 100% precision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brenner, H., Rothenbacher, D., Arndt, V.: Epidemiology of stomach cancer. In: Verma, M. (ed.) Cancer Epidemiology, pp. 467–477. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-60327-492-0_23
Parkin, D.M., Bray, F., Ferlay, J., Pisani, P.: Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 94(2), 153–156 (2001)
Rangayyan, R.M., El-Faramawy, N.M., Desautels, J.L., Alim, O.A.: Measures of acutance and shape for classification of breast tumors. IEEE Trans. Med. Imaging 16(6), 799–810 (1997)
Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. Technical report, University of Wisconsin-Madison Department of Computer Sciences (1990)
Quinlan, J.R.: Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4, 77–90 (1996)
Hamilton, H.J., Cercone, N., Shan, N.: RIAC: A Rule Induction Algorithm Based on Approximate Classification. Princeton, Citeseer (1996)
Salama, G.I., Abdelhalim, M., Zeid, M.A.: Breast cancer diagnosis on three different datasets using multi-classifiers. Breast Cancer (WDBC) 32(569), 2 (2012)
Polat, K., Güneş, S.: Breast cancer diagnosis using least square support vector machine. Digit. Signal Proc. 17(4), 694–701 (2007)
Nauck, D., Kruse, R.: Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 16(2), 149–169 (1999)
Pena-Reyes, C.A., Sipper, M.: A fuzzy-genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17(2), 131–155 (1999)
Abonyi, J., Szeifert, F.: Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recogn. Lett. 24(14), 2195–2207 (2003)
Paulin, F., Santhakumaran, A.: Classification of breast cancer by comparing back propagation training algorithms. Int. J. Comput. Sci. Eng. 3(1), 327–332 (2011)
Nahato, K.B., Harichandran, K.N., Arputharaj, K.: Knowledge mining from clinical datasets using rough sets and backpropagation neural network. Comput. Math. Methods Med. 2015, 13 (2015)
Abdel-Zaher, A.M., Eldeib, A.M.: Breast cancer classification using deep belief networks. Expert Syst. Appl. 46, 139–144 (2016)
Werbos, P.J.: The Roots of Backpropagation: from Ordered Derivatives to Neural Networks and Political Forecasting, vol. 1. Wiley, Hoboken (1994)
Hush, D.R., Horne, B.G.: Progress in supervised neural networks. IEEE Signal Process. Mag. 10(1), 8–39 (1993)
Ozturk, C., Karaboga, D.: Hybrid artificial bee colony algorithm for neural network training. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 84–88. IEEE (2011)
Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 318–329. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73729-2_30
Korani, W., Mouhoub, M., Spirty, R.: Mother tree optimization. In: Proceedings of the 2019 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2019), pp. 2206–2213. IEEE (2019)
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43. IEEE (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Korani, W., Mouhoub, M. (2020). Breast Cancer Diagnostic Tool Using Deep Feedforward Neural Network and Mother Tree Optimization. In: Dorronsoro, B., Ruiz, P., de la Torre, J., Urda, D., Talbi, EG. (eds) Optimization and Learning. OLA 2020. Communications in Computer and Information Science, vol 1173. Springer, Cham. https://doi.org/10.1007/978-3-030-41913-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-41913-4_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41912-7
Online ISBN: 978-3-030-41913-4
eBook Packages: Computer ScienceComputer Science (R0)