Skip to main content

Angiodysplasia Segmentation on Capsule Endoscopy Images Using AlbuNet with Squeeze-and-Excitation Blocks

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2020)

Abstract

Angiodysplasia is a small primary lesion in the gut, which may cause gastrointestinal bleeding. Wireless capsule endoscopy is one of the best tools to capture images of these lesions. Since it generates thousands of images, it is crucial to segment angiodysplasia automatically. Recently, AlbuNet, a deep learning network, has shown a promising result and considered as the state-of-the-art technique. In this paper, we aim to enhance AlbuNet from two angles. First, squeeze-and-excitation is similar to the concept of attention on different channels, so it can combine variants of extracted features. Second, a pre-processing step to enhance an image’s quality is proposed by applying a computer vision technique called “contrast limit adaptive histogram equalization (CLAHE)”. The experiment was conducted on two benchmarks: MICCAI 2017 and 2018 datasets and evaluated in terms of Dice coefficient and Jaccard index scores. The results showed that our model outperformed a baseline technique, AlbuNet, on both datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hussein Al-Hamid, M.F., Department of Gastroenterology, Providence Hospital: Angiodysplasia of the Colon. https://emedicine.medscape.com/article/170719-overview (2019)

  2. Kim, S.H., Cha, Y.S., Lee, Y., Kim, H., Yoon, I.N.: Successful treatment of central retinal artery occlusion using hyperbaric oxygen therapy. Clin. Exp. Emerg. Med. 5(4), 278–281 (2018). https://doi.org/10.15441/ceem.17.271

    Article  Google Scholar 

  3. Medical Advisory, S.: Wireless capsule endoscopy: an evidence-based analysis. Ont. Health Technol. Assess. Ser. 3(2), 1–35 (2003)

    Google Scholar 

  4. Fernandez-Urien, I., et al.: Capsule endoscopy capture rate: has 4 frames-per-second any impact over 2 frames-per-second? World J. Gastroenterol. 20(39), 14472–14478 (2014). https://doi.org/10.3748/wjg.v20.i39.14472

    Article  Google Scholar 

  5. Noya, F., Álvarez-González, M.A., Benítez, R.: Automated angiodysplasia detection from wireless capsule endoscopy. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 11–15 July 2017, pp. 3158–3161 (2017)

    Google Scholar 

  6. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  7. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas (2018)

    Google Scholar 

  8. Mohammed, A.K., Yayilgan, S.Y., Farup, I., Pedersen, M., Hovde, Ø.: Y-Net: a deep convolutional neural network for polyp detection. CoRR abs/1806.01907 (2018)

    Google Scholar 

  9. Shvets, A.A., Iglovikov, V.I., Rakhlin, A., Kalinin, A.A.: Angiodysplasia detection and localization using deep convolutional neural networks. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 17–20 December 2018, pp. 612-617 (2018)

    Google Scholar 

  10. MICCAI 2017 Endoscopic Vision Challenge: Angiodysplasia detection and localization (2017). https://endovissub2017-giana.grand-challenge.org/Angiodysplasia-ETISDB/

  11. MICCAI 2018 Endoscopic Vision Challenge: Angiodysplasia detection and localization (2018). https://giana.grand-challenge.org/WCE/

  12. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Neural Information Processing Systems, vol. 25 (2012). https://doi.org/10.1145/3065386

  13. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Paul, S.H. (ed.) Graphics Gems IV, pp. 474–485. Academic Press Professional, Inc., San Diego (1994)

    Chapter  Google Scholar 

  14. Iglovikov, V., Shvets, A.: TernausNet: U-Net with VGG11 encoder pre-trained on ImageNet for image segmentation (2018)

    Google Scholar 

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556 (2014)

    Google Scholar 

  16. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Proceedings of the 27th International Conference on Neural Information Processing Systems, vol. 2, Montreal, Canada

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June 2016, pp. 770-778 (2016)

    Google Scholar 

  18. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18–23 June 2018, pp. 7132-7141 (2018)

    Google Scholar 

  19. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, Lille, France (2015)

    Google Scholar 

  20. Iglovikov, V., Mushinskiy, S., Osin, V.: Satellite imagery feature detection using deep convolutional neural network: a kaggle competition (2017)

    Google Scholar 

  21. Dray, X., et al.: CAD-CAP: une base de données française à vocation internationale, pour le développement et la validation d’outils de diagnostic assisté par ordinateur en vidéocapsule endoscopique du grêle. Journées Francophones d’Hépatogastroentérologie et d’Oncologie Digestive. Paris, 22–25 mars 2018

    Google Scholar 

  22. Leenhardt, R., et al.: CAD-CAP: a 25000 Images Database Serving the Development of Artificial Intelligence for Capsule Endoscopy, Endoscopy international Open (2020, in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sirichart Gobpradit or Peerapon Vateekul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gobpradit, S., Vateekul, P. (2020). Angiodysplasia Segmentation on Capsule Endoscopy Images Using AlbuNet with Squeeze-and-Excitation Blocks. In: Nguyen, N., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Lecture Notes in Computer Science(), vol 12033. Springer, Cham. https://doi.org/10.1007/978-3-030-41964-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41964-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41963-9

  • Online ISBN: 978-3-030-41964-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics