Skip to main content

Machine Learning Models for Real Estate Appraisal Constructed Using Spline Trend Functions

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2020)

Abstract

The paper presents methods of modeling the real estate market using trend functions reflecting changes in real estate prices over time. Real estate transaction prices that are used to create data-driven valuation models must be updated in line with the trend of their change. The primary purpose of the first part of the study was to examine the extent to which splines are suitable for the trend function compared to polynomials of the degree from 1 to 6. In turn, the second part was to compare the performance of prediction models built on the basis of updated data with various trend functions: splines and polynomials. The experiments were conducted using real data on purchase and sale transactions of residential premises concluded in one of the Polish cities. Four machine learning algorithms implemented in the Python environment were used to generate property valuation models. Statistical analysis of the results was carried out using non-parametric Friedman and Wilcoxon tests. The study showed the usefulness of applying splines to model trend functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lasota, T., Sawiłow, E., Trawiński, B., Roman, M., Marczuk, P., Popowicz, P.: A method for merging similar zones to improve intelligent models for real estate appraisal. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015, Part I. LNCS (LNAI), vol. 9011, pp. 472–483. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15702-3_46

    Chapter  Google Scholar 

  2. Lasota, T., et al.: Enhancing intelligent property valuation models by merging similar cadastral regions of a municipality. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015, Part II. LNCS (LNAI), vol. 9330, pp. 566–577. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24306-1_55

    Chapter  Google Scholar 

  3. Kontrimas, V., Verikas, A.: The mass appraisal of the real estate by computational intelligence. Appl. Soft Comput. 11(1), 443–448 (2011). https://doi.org/10.1016/j.asoc.2009.12.003

    Article  Google Scholar 

  4. Zurada, J., Levitan, A.S., Guan, J.: A comparison of regression and artificial intelligence methods in a mass appraisal context. J. Real Estate Res. 33(3), 349–388 (2011)

    Google Scholar 

  5. Peterson, S., Flangan, A.B.: Neural network hedonic pricing models in mass real estate appraisal. J. Real Estate Res. 31(2), 147–164 (2009)

    Google Scholar 

  6. Narula, S.C., Wellington, J.F., Lewis, S.A.: Valuating residential real estate using parametric programming. Eur. J. Oper. Res. 217, 120–128 (2012)

    Article  Google Scholar 

  7. Antipov, E.A., Pokryshevskaya, E.B.: Mass appraisal of residential apartments: an application of Random forest for valuation and a CART-based approach for model diagnostics. Expert Syst. Appl. 39, 1772–1778 (2012). https://doi.org/10.1016/j.eswa.2011.08.077

    Article  Google Scholar 

  8. D’Amato, M.: Comparing rough set theory with multiple regression analysis as automated valuation methodologies. Int. Real Estate Rev. 10(2), 42–65 (2007)

    Google Scholar 

  9. Kusan, H., Aytekin, O., Özdemir, I.: The use of fuzzy logic in predicting house selling price. Expert Syst. Appl. 37(3), 1808–1813 (2010). https://doi.org/10.1016/j.eswa.2009.07.031

    Article  Google Scholar 

  10. Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014). https://doi.org/10.1016/j.inffus.2013.04.006

    Article  Google Scholar 

  11. Jȩdrzejowicz, J., Jȩdrzejowicz, P.: A family of GEP-induced ensemble classifiers. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 641–652. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04441-0_56

    Chapter  Google Scholar 

  12. Burduk, R., Baczyńska, P.: Dynamic ensemble selection using discriminant functions and normalization between class labels – approach to binary classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 563–570. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_48

    Chapter  Google Scholar 

  13. Kazienko, P., Lughofer, E., Trawiński, B.: Hybrid and ensemble methods in machine learning. J. Univ. Comput. Sci. 19(4), 457–461 (2013)

    Google Scholar 

  14. Fernández, A., López, V., José del Jesus, M., Herrera, F.: Revisiting evolutionary fuzzy systems: taxonomy, applications, new trends and challenges. Knowl.-Based Syst. 80, 109–121 (2015). https://doi.org/10.1016/j.knosys.2015.01.013

    Article  Google Scholar 

  15. Lughofer, E., Cernuda, C., Kindermann, S., Pratama, M.: Generalized smart evolving fuzzy systems. Evol. Syst. 6(4), 269–292 (2015). https://doi.org/10.1007/s12530-015-9132-6

    Article  Google Scholar 

  16. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: A multi-agent system to assist with real estate appraisals using bagging ensembles. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 813–824. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04441-0_71

    Chapter  Google Scholar 

  17. Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of bagging ensembles of fuzzy models for premises valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010. LNCS (LNAI), vol. 5991, pp. 330–339. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12101-2_34

    Chapter  Google Scholar 

  18. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of bagging ensembles comprising genetic fuzzy models to assist with real estate appraisals. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04394-9_67

    Chapter  Google Scholar 

  19. Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical comparison of resampling methods using genetic fuzzy systems for a regression problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23878-9_3

    Chapter  Google Scholar 

  20. Trawiński, B.: Evolutionary fuzzy system ensemble approach to model real estate market based on data stream exploration. J. Univ. Comput. Sci. 19(4), 539–562 (2013). https://doi.org/10.3217/jucs-019-04-0539

    Article  MathSciNet  Google Scholar 

  21. Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On employing fuzzy modeling algorithms for the valuation of residential premises. Inf. Sci. 181, 5123–5142 (2011). https://doi.org/10.1016/j.ins.2011.07.012

    Article  Google Scholar 

  22. Meijering, E.: A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proc. IEEE 90(3), 319–342 (2002). https://doi.org/10.1109/5.993400

    Article  Google Scholar 

  23. Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-97385-7

    Book  MATH  Google Scholar 

  24. Runge, C.: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Zeitschrift für Mathematik und Physik 46, 224–243 (1901). www.archive.org

  25. Dierckx, P.: Curve and Surface Fitting with Splines. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  26. de Boor, C.: A Practical Guide to Splines. Springer, New York (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Trawiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jarosz, M., Kutrzyński, M., Lasota, T., Piwowarczyk, M., Telec, Z., Trawiński, B. (2020). Machine Learning Models for Real Estate Appraisal Constructed Using Spline Trend Functions. In: Nguyen, N., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Lecture Notes in Computer Science(), vol 12033. Springer, Cham. https://doi.org/10.1007/978-3-030-41964-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41964-6_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41963-9

  • Online ISBN: 978-3-030-41964-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics