Skip to main content

Fault-Tolerant Physical Human-Robot Interaction via Stiffness Adaptation of Elastic Actuators

  • Conference paper
  • First Online:
Human-Friendly Robotics 2019 (HFR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 12))

Included in the following conference series:

Abstract

Elastic actuators are popular in human-robot interaction as they can improve human safety and efficiency. Yet, such actuators are more complex than rigid ones and might be subject to additional technical faults, e.g., stiffness changes. This paper extends previous studies on stiffness-fault-tolerant physical human-robot interaction (pHRI) through control adaptation, introducing new methods for stiffness estimation and fault evaluation. Kalman filters with different measurement signals and system models estimating the actual stiffness value of the elastic element are compared. Faults are evaluated by analyzing the structural durability and compensated by adapting an impedance controller to provide a desired interaction stiffness. Experiments with a series elastic actuator underline the feasibility of the evaluation and compensation methods for attaining safe and reliable pHRI. Results show that stiffness estimation during pHRI is possible when the actuator friction and interaction torque is either negligible or well known, or when the torque at the spring is measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haddadin, S., Albu-Schaeffer, A., De Luca, A., Hirzinger, G.: Collision detection and reaction: a contribution to safe physical human-robot interaction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3356–3363 (2008)

    Google Scholar 

  2. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Safe physical human-robot interaction: measurements, analysis and new insights. In: ISRR, vol. 66, pp. 395–407. Springer, Heidelberg (2007)

    Google Scholar 

  3. Lens, T., von Stryk, O.: Investigation of safety in human-robot-interaction for a series elastic, tendon-driven robot driven robot arm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)

    Google Scholar 

  4. Vanderborght, B., Van Ham, R., Lefeber, D., Sugar, T.G., Hollander, K.W.: Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators. Int. J. Robot. Res. 28(1), 90–103 (2009)

    Article  Google Scholar 

  5. Verstraten, T., Beckerle, P., Furnémont, R., Mathijssen, G., Vanderborght, B., Lefeber, D.: Series and parallel elastic actuation: impact of natural dynamics on power and energy consumption. Mech. Mach. Theory 102, 232–246 (2016)

    Article  Google Scholar 

  6. Beckerle, P.: Practical relevance of faults, diagnosis methods, and tolerance measures in elastically actuated robots. Control Eng. Pract. 50, 95–100 (2016)

    Article  Google Scholar 

  7. Filippini, R., Sen, S., Bicchi, A.: Toward soft robots you can depend on. IEEE Robot. Autom. Mag. 15(3), 31–41 (2008)

    Article  Google Scholar 

  8. Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Damme, M.V., Ham, R.V., Visser, L., Wolf, S.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  9. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (1995)

    Google Scholar 

  10. Schiavi, R., Grioli, G., Sen, S., Bicchi, A.: VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: IEEE International Conference on Robotics and Automation (2008)

    Google Scholar 

  11. Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, Heidelberg (2006)

    Google Scholar 

  12. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, Heidelberg (2010)

    Google Scholar 

  13. Stuhlenmiller, F., Perner, G., Rinderknecht, S., Beckerle, P.: A stiffness-fault-tolerant control strategy for reliable physical human-robot interaction. In: Human Friendly Robotics, pp. 3–14. Springer, Heidelberg (2019)

    Google Scholar 

  14. Lendermann, M., Singh, B.R.P., Stuhlenmiller, F., Beckerle, P., Rinderknecht, S., Manivannan, P.V.: Comparison of passivity based impedance controllers without torque-feedback for variable stiffness actuators. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2015)

    Google Scholar 

  15. Schuy, J., Beckerle, P., Wojtusch, J., Rinderknecht, S., von Stryk, O.: Conception and evaluation of a novel variable torsion stiffness for biomechanical applications. In: IEEE/RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 713–718 (2012)

    Google Scholar 

  16. Spong, M.W.: Adaptive control of flexible joint manipulators. Syst. Control Lett. 13, 15–21 (1989)

    Article  MathSciNet  Google Scholar 

  17. Andersson, S., Söderberg, A., Björklund, S.: Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol. Int. 40(4), 580–587 (2007)

    Article  Google Scholar 

  18. Lemaitre, J., Dufailly, J.: Damage measurements. Eng. Fract. Mech. 28(5), 643–661 (1987)

    Article  Google Scholar 

  19. Flacco, F., De Luca, A.: Residual-based stiffness estimation in robots with flexible transmissions. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5541–5547. IEEE (2011)

    Google Scholar 

  20. Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  21. Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE2000, pp. 153–158. IEEE (2000)

    Google Scholar 

  22. Wu, M., Smyth, A.: Application of the unscented kalman filter for real-time nonlinear structural system identification. Struct. Control Health Monit. 14, 971–990 (2007)

    Article  Google Scholar 

  23. Schuy, J., Beckerle, P., Faber, J., Wojtusch, J., Rinderknecht, S., von Stryk, O.: Dimensioning and evaluation of the elastic element in a variable torsion stiffness actuator. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2013)

    Google Scholar 

  24. de Souza Neto, E.A., Perić, D., Owen, D.R.J.: Computational Methods for Plasticity. Wiley, Hoboken (2008)

    Book  Google Scholar 

  25. Ott, C.: English Cartesian Impedance Control of Redundant and Flexible-Joint Robots. Springer, Heidelberg (2008)

    Google Scholar 

  26. Kaur, N., Kaur, A.: A review on tuning of extended kalman filter using optimization techniques for state estimation. Int. J. Comput. Appl. 145(15), 1–5 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was supported by a Deutsche Forschungsgemeinschaft (DFG) Research Grant (no. BE 5729/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo J. Velasco-Guillen .

Editor information

Editors and Affiliations

Appendices

Appendix

A Filter Covariance Matrices

  • EKF with complete actuator model:

    $$\begin{aligned} \mathbf {Q}= 1 \times 10^{-7} \text {diag}\left( 1,1000,1,1000,100000,100,100\right) , \,\, \mathbf {R}= 1 \times 10^{-7} \mathbf {I}_7. \end{aligned}$$
  • EKF with torque sensor at the spring:

    $$\begin{aligned} \mathbf {Q} = \text {diag}\left( 1 \times 10^{-20},1 \times 10^{-15}\right) , \,\, \mathbf {R} = 1 \times 10^{-20}\mathbf {I}_2. \end{aligned}$$
  • UKF with torque sensor at the spring:

    $$\begin{aligned} \mathbf {Q}=\left[ 1 \times 10^{-5}\right] , \,\, \mathbf {R}= \left[ 1 \times 10^{-8}\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stuhlenmiller, F., Velasco-Guillen, R.J., Rinderknecht, S., Beckerle, P. (2020). Fault-Tolerant Physical Human-Robot Interaction via Stiffness Adaptation of Elastic Actuators. In: Ferraguti, F., Villani, V., Sabattini, L., Bonfè, M. (eds) Human-Friendly Robotics 2019. HFR 2019. Springer Proceedings in Advanced Robotics, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-42026-0_6

Download citation

Publish with us

Policies and ethics