Skip to main content

Remote Side-Channel Attacks on Heterogeneous SoC

  • Conference paper
  • First Online:
Smart Card Research and Advanced Applications (CARDIS 2019)

Abstract

Thanks to their performance and flexibility, FPGAs are increasingly adopted for hardware acceleration on various platforms such as system on chip and cloud datacenters. Their use for commercial and industrial purposes raises concern about potential hardware security threats. By getting access to the FPGA fabric, an attacker could implement malicious logic to perform remote hardware attacks. Recently, several papers demonstrated that FPGA can be used to eavesdrop or disturb the activity of resources located within and outside the chip. In a complex SoC that contains a processor and a FPGA within the same die, we experimentally demonstrate that FPGA-based voltage sensors can eavesdrop computations running on the CPU and that advanced side-channel attacks can be conducted remotely to retrieve the secret key of a symmetric crypto-algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang, A., Sethumadhavan, S., Stolfo, S.: CLKSCREW: exposing the perils of security-oblivious energy management. In: 26th USENIX Security Symposium (2017)

    Google Scholar 

  2. Kim, Y., et al.: Flipping bits in memory without accessing them. ACM SIGARCH 42(3), 361–372 (2014)

    Article  Google Scholar 

  3. Kocher, P., et al.: Spectre attacks: exploiting speculative execution, January 2018

    Google Scholar 

  4. Lipp, M., et al.: Meltdown. CoRR, abs/1801.0, January 2018

    Google Scholar 

  5. Van Bulck, J., et al.: FORESHADOW: extracting the keys to the intel SGX kingdom with transient out-of-order execution. In: USENIX Security Symposium (2018)

    Google Scholar 

  6. Pellerin, D.: FPGA accelerated computing using AWS F1 instances (2017)

    Google Scholar 

  7. Alibaba Cloud ECS: Deep Dive into Alibaba Cloud F3 FPGA as a Service Instances (2018)

    Google Scholar 

  8. Schellenberg, F., Gnad, D.R.E., Moradi, A., Tahoori, M.B.: An inside job: remote power analysis attacks on FPGAs. In: Design, Automation & Test in Europe Conference & Exhibition. IEEE (2018)

    Google Scholar 

  9. Krautter, J., Gnad, D.R.E., Tahoori, M.B.: FPGAhammer : remote voltage fault attacks on shared FPGAs, suitable for DFA on AES. IACR Trans. Cryptograph. Hardware Embed. Syst. 14, 44–68 (2018)

    Google Scholar 

  10. Chen, F., et al.: Enabling FPGAs in the cloud. In: ACM Computing Frontiers (2014)

    Google Scholar 

  11. Gnad, D.R.E., Oboril, F., Tahoori, M.B.: Voltage drop-based fault attacks on FPGAs using valid bitstreams. In: 2017 27th International Conference on Field Programmable Logic and Applications, FPL 2017 (2017)

    Google Scholar 

  12. Zhao, M., Suh, G.E.: FPGA-based remote power side-channel attacks. In: IEEE Symposium on Security and Privacy (2018)

    Google Scholar 

  13. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: CRYPTO 1996 (1996)

    Chapter  Google Scholar 

  14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  15. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  16. Dutertre, J.-M., Robisson, B., Tria, A., Zussa, L.: Investigation of timing constraints violation as a fault injection means. In: Design of Circuits and Integrated Systems (2012)

    Google Scholar 

  17. Zick, K.M., Hayes, J.P.: Low-cost sensing with ring oscillator arrays for healthier reconfigurable systems. ACM Trans. Reconfigurable Technol. Syst. 5(1), 1–26 (2012)

    Article  Google Scholar 

  18. Gnad, D.R.E., Oboril, F., Kiamehr, S., Tahoori, M.B.: An experimental evaluation and analysis of transient voltage fluctuations in FPGAs. IEEE Trans. Very Large Scale Integr. Syst. 26(10), 1817–1830 (2018)

    Article  Google Scholar 

  19. Schellenberg, F., Gnad, D.R.E., Moradi, A., Tahoori, M.B.: Remote inter-chip power analysis side-channel attacks at board-level. In: Proceedings of the International Conference on Computer-Aided Design (2018)

    Google Scholar 

  20. Ueno, M., Hashimoto, M., Onoye, T.: Real-time on-chip supply voltage sensor and its application to trace-based timing error localization. In: International On-Line Testing Symposium (IOLTS). IEEE, July 2015

    Google Scholar 

  21. Zick, K.M., Srivastav, M., Zhang, W., French, M.: Sensing nanosecond-scale voltage attacks and natural transients in FPGAs. In: ACM/SIGDA (2013)

    Google Scholar 

  22. Kokke: Tiny AES in C (2018)

    Google Scholar 

  23. OpenSSL: OpenSSL AES (2002)

    Google Scholar 

  24. Mestiri, H., Benhadjyoussef, N., Machhout, M., Tourki, R.: A comparative study of power consumption models for CPA attack. Int. J. Comput. Netw. Inf. Secur. 5(3), 25 (2013)

    Google Scholar 

  25. Daemen, J., Rijmen, V.: The Rijndael Block Cipher (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Gravellier .

Editor information

Editors and Affiliations

8 Appendix

8 Appendix

Fig. 10.
figure 10

Logic schematic and implemented design of one TDC-based sensor instance. Each dotted rectangle in the logic schematic represents 1 slice (26 in total). The delay line provides 32 quantization levels and a sampling rate of 200 MS/s per sensor.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gravellier, J., Dutertre, JM., Teglia, Y., Moundi, P.L., Olivier, F. (2020). Remote Side-Channel Attacks on Heterogeneous SoC. In: Belaïd, S., Güneysu, T. (eds) Smart Card Research and Advanced Applications. CARDIS 2019. Lecture Notes in Computer Science(), vol 11833. Springer, Cham. https://doi.org/10.1007/978-3-030-42068-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42068-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42067-3

  • Online ISBN: 978-3-030-42068-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics