Abstract
Certificateless public key encryption (\(\mathsf {CL}\hbox {-}\mathsf {PKE}\)) solves the problems of establishing public-key infrastructure for traditional public key encryption and resolving key escrow for identity-based encryption. Equality test is an extremely useful property that enables the ability of checking whether two ciphertexts encrypting the same message. Qu et al. (Information Science 2019) introduced the notion of certificateless public key encryption with equality test (\(\mathsf {CL}\hbox {-}\mathsf {PKEET}\)), together with four types of adversaries, that solves certificate manangement and key escrow problems of public key encryption with equality test (\(\mathsf {PKEET}\)) and identity-based encryption with equality test (\(\mathsf {IBEET}\)), and proposed a first \(\mathsf {CL}\hbox {-}\mathsf {PKEET}\) scheme based on Bilinear Diffie-Hellman assumption in random oracle model. In this paper, we propose the first lattice-based \(\mathsf {CL}\hbox {-}\mathsf {PKEET}\) in standard model whose security is reduced to the hardness of the learning with errors problem. In particular, we prove that our schemes are secure against two types of selective-identity adversaries introduced by Qu et al.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28
Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1
Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory Comput. Syst. 48(3), 535–553 (2011)
Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_29
Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_14
Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_30
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27
Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)
Duong, D.H., Fukushima, K., Kiyomoto, S., Roy, P.S., Susilo, W.: A lattice-based public key encryption with equality test in standard model. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 138–155. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21548-4_8
Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_23
Ma, S.: Identity-based encryption with outsourced equality test in cloud computing. Inf. Sci. 328, 389–402 (2016)
Qu, H., Yan, Z., Lin, X.J., Zhang, Q., Sun, L.: Certificateless public key encryption with equality test. Inf. Sci. 462, 76–92 (2018)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 1–40 (2009)
Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5
Shoup, V.: A Computational Introduction to Number Theory and Algebra, 2nd edn. Cambridge University Press, Cambridge (2008)
Sepahi, R., Steinfeld, R., Pieprzyk, J.: Lattice-based certificateless public-key encryption in the standard model. Int. J. Inf. Sec. 13(4), 315–333 (2014)
Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–131. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5_9
Acknowledgement
This work is supported by the Australian Research Council Discovery Project DP180100665.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Duong, D.H., Susilo, W., Bui, M.K., Khuc, T.X. (2020). A Lattice-Based Certificateless Public Key Encryption with Equality Test in Standard Model. In: Liu, Z., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2019. Lecture Notes in Computer Science(), vol 12020. Springer, Cham. https://doi.org/10.1007/978-3-030-42921-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-42921-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-42920-1
Online ISBN: 978-3-030-42921-8
eBook Packages: Computer ScienceComputer Science (R0)