Skip to main content

Strong Authenticity with Leakage Under Weak and Falsifiable Physical Assumptions

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12020))

Included in the following conference series:

Abstract

Authenticity can be compromised by information leaked via side-channels (e.g., power consumption). Examples of attacks include direct key recoveries and attacks against the tag verification which may lead to forgeries. At FSE 2018, Berti et al. described two authenticated encryption schemes which provide authenticity assuming a leak-free implementation of a Tweakable Block Cipher (\(\mathsf {TBC} \)). Precisely, security is guaranteed even if all the intermediate computations of the target implementation are leaked in full but the \(\mathsf {TBC} \) long-term key. Yet, while a leak-free implementation reasonably models strongly protected implementations of a \(\mathsf {TBC} \), it remains an idealized physical assumption that may be too demanding in many cases, in particular if hardware engineers mitigate the leakage to a good extent but (due to performance constraints) do not reach leak-freeness. In this paper, we get rid of this important limitation by introducing the notion of Strong Unpredictability with Leakage for \(\mathsf {BC} \)’s and \(\mathsf {TBC} \)’s. It captures the hardness for an adversary to provide a fresh and valid input/output pair for a \((\mathsf {T})\mathsf {BC} \), even having oracle access to the \((\mathsf {T})\mathsf {BC} \), its inverse and their leakages. This definition is game-based and may be verified/falsified by laboratories. Based on it, we then provide two Message Authentication Codes (\(\mathsf {MAC} \)) which are secure if the \((\mathsf {T})\mathsf {BC} \) on which they rely are implemented in a way that maintains a sufficient unpredictability. Thus, we improve the theoretical foundations of leakage-resilient \(\mathsf {MAC} \) and extend them towards engineering constraints that are easier to achieve in practice. (The full version of this paper is available on ePrint [8].)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that some \(\mathsf {MAC} \)s were parts of authenticated encryption (\(\mathsf {AE} \)) proposals.

  2. 2.

    The \(\mathsf {MAC} \) of [3, 25] consumes \(\approx \)4 s to generate a tag on a 32-bit ARM.

  3. 3.

    \(\mathsf {F}^*\) means that the \(\mathsf {BC} \) \(\mathsf {F}\) is implemented in a leak-free way.

  4. 4.

    This idealized assumption is used for simplifying our analyzes, since our focus is on the leak-free blocks. We leave its relaxation as an interesting open problem.

  5. 5.

    Indeed, \(\mathsf {Unpr}\) can be based on weaker complexity assumptions [12].

References

  1. An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: message authentication under weakened assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 252–269. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_16

    Chapter  Google Scholar 

  2. Aumasson, J.-P., et al.: CHAE: challenges in authenticated encryption. ECRYPT-CSA D1.1, Revision 1.05 (March 2017). https://chae.cr.yp.to/whitepaper.html

  3. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in the face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_24

    Chapter  MATH  Google Scholar 

  4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1

    Chapter  Google Scholar 

  5. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

    Article  MathSciNet  Google Scholar 

  6. Bellizia, D., et al.: Spook: sponge-based leakage-resilient authenticated encryption with a masked tweakable block cipher. Submission to NIST Lightweight Cryptography (2019). https://www.spook.dev/

  7. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: TEDT, a leakage-resilient AEAD mode for high (physical) security applications. IACR Cryptology ePrint Archive, 2019:137 (2019)

    Google Scholar 

  8. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Strong authenticity with leakage under weak and falsifiable physical assumptions. Cryptology ePrint Archive, Report 2019/1413 (2019). https://eprint.iacr.org/2019/1413. Full version of this paper

  9. Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.-X.: Ciphertext integrity with misuse and leakage: definition and efficient constructions with symmetric primitives. In: AsiaCCS, pp. 37–50. ACM (2018)

    Google Scholar 

  10. Berti, F., Pereira, O., Peters, T., Standaert, F.-X.: On leakage-resilient authenticated encryption with decryption leakages. IACR Trans. Symmetric Cryptol. 2017(3), 271–293 (2017)

    Google Scholar 

  11. Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 225–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_8

    Chapter  Google Scholar 

  12. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 355–374. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_22

    Chapter  Google Scholar 

  13. Dodis, Y., Steinberger, J.: Message authentication codes from unpredictable block ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 267–285. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_16

    Chapter  Google Scholar 

  14. Dodis, Y., Steinberger, J.: Domain extension for MACs beyond the birthday barrier. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 323–342. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_19

    Chapter  Google Scholar 

  15. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302. IEEE Computer Society (2008)

    Google Scholar 

  16. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 567–597. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_20

    Chapter  MATH  Google Scholar 

  17. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Towards low-energy leakage-resistant authenticated encryption from the duplex sponge construction. IACR Cryptology ePrint Archive, 2019:193 (2019)

    Google Scholar 

  18. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Authenticated encryption with nonce misuse and physical leakage: definitions, separation results and first construction. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 150–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_8

    Chapter  Google Scholar 

  19. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_10

    Chapter  Google Scholar 

  20. Journault, A., Standaert, F.-X.: Very high order masking: efficient implementation and security evaluation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 623–643. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_30

    Chapter  Google Scholar 

  21. Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. IACR Cryptology ePrint Archive, 2019:302 (2019)

    Google Scholar 

  22. Kocher, P.C.: Timing Attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  23. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  24. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_3

    Chapter  Google Scholar 

  25. Martin, D.P., Oswald, E., Stam, M., Wójcik, M.: A leakage resilient MAC. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 295–310. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9_18

    Chapter  Google Scholar 

  26. Pereira, O., Standaert, F.-X., Vivek, S.: Leakage-resilient authentication and encryption from symmetric cryptographic primitives. In: ACM Conference on Computer and Communications Security, pp. 96–108. ACM (2015)

    Google Scholar 

  27. Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical leakage-resilient pseudorandom generators. In: ACM Conference on Computer and Communications Security, pp. 141–151. ACM (2010)

    Google Scholar 

  28. Zhang, L., Wu, W., Wang, P., Zhang, L., Wu, S., Liang, B.: Constructing rate-1 MACs from related-key unpredictable block ciphers: PGV model revisited. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 250–269. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_14

    Chapter  Google Scholar 

Download references

Acknowledgments

Thomas Peters and François-Xavier Standaert are respectively post-doctoral researcher and senior research associate of the Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been funded in parts by the European Union through the ERC project SWORD (724725) and the Walloon Region FEDER USERMedia project 501907-379156. Chun Guo was partly supported by the Program of Qilu Young Scholars of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Berti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, FX. (2020). Strong Authenticity with Leakage Under Weak and Falsifiable Physical Assumptions. In: Liu, Z., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2019. Lecture Notes in Computer Science(), vol 12020. Springer, Cham. https://doi.org/10.1007/978-3-030-42921-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42921-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42920-1

  • Online ISBN: 978-3-030-42921-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics