Skip to main content

Decentralized Multi-Agent Navigation Planning with Braids

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XII

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 13))

Abstract

We present a novel planning framework for navigation in dynamic, multi-agent environments with no explicit communication among agents, such as pedestrian scenes. Inspired by the collaborative nature of human navigation, our approach treats the problem as a coordination game, in which players coordinate to avoid each other as they move towards their destinations.We explicitly encode the concept of coordination into the agents’ decision making process through a novel inference mechanism about future joint strategies of avoidance. We represent joint strategies as equivalence classes of topological trajectory patterns using the formalism of braids. This topological representation naturally generalizes to any number of agents and provides the advantage of adaptability to different environments, in contrast to the majority of existing approaches. At every round, the agents simultaneously decide on their next action that contributes collisionfree progress towards their destination but also towards a global joint strategy that appears to be in compliance with all agents’ preferences, as inferred from their past behaviors. This policy leads to a smooth and rapid uncertainty decrease regarding the emerging joint strategy that is promising for real world scenarios. Simulation results highlight the importance of reasoning about joint strategies and demonstrate the efficacy of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Artin. Theory of braids. \(\underline{{\rm Annals \ of \ Mathematics}}\), 48(1):pp. 101–126, 1947.

    Google Scholar 

  2. M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun. Learning motion patterns of people for compliant robot motion. \(\underline{{\rm Int. \ J. \ of \ Robotics \ Res.}}\), 24:31–48, 2005.

    Google Scholar 

  3. J. S. Birman. \(\underline{{\rm Braids \ Links \ And \ Mapping \ Class \ Groups}}\). Princeton University Press, 1975.

    Google Scholar 

  4. S. Bonneaud and W. H. Warren. An empirically-grounded emergent approach to modeling pedestrian behavior. In \(\underline{{\rm Pedestrian \ and \ Evacuation \ Dynamics \ 2012}}\), pages 625–638. Springer International Publishing, 2014.

    Google Scholar 

  5. G. Csibra and G. Gergely. The teleological origins of mentalistic action explanations: A developmental hypothesis. \(\underline{{\rm Developmental \ Science}}\), 1(2):255–259, 1998.

    Google Scholar 

  6. G. Csibra and G. Gergely. ‘Obsessed with goals’: Functions and mechanisms of teleological interpretation of actions in humans. \(\underline{{\rm Acta \ Psychologica}}\), 124(1):60–78, Jan. 2007.

    Google Scholar 

  7. Y. Diaz-Mercado and M. Egerstedt. Interactions in multi-robot systems using braids. \(\underline{{\rm Robotics, \ IEEE \ Transactions \ on}}\), 2016. Under Review.

    Google Scholar 

  8. A. D. Dragan and S. Srinivasa. Integrating human observer inferences into robot motion planning. \(\underline{{\rm Auton. \ Robots}}\), 37(4):351–368, 2014.

    Google Scholar 

  9. D. Helbing and P. Molnár. Social force model for pedestrian dynamics. \(\underline{{\rm Phys. \ Rev. \ E}}\), 51: 4282–4286, May 1995.

    Google Scholar 

  10. P. Henry, C. Vollmer, B. Ferris, and D. Fox. Learning to navigate through crowded environments. In \(\underline{{\rm IEEE \ International \ Conference \ on \ Robotics \ and \ Automation \ (ICRA)}}\), 2010.

    Google Scholar 

  11. S. Hoogendoorn and P. H. Bovy. Simulation of pedestrian flows by optimal control and differential games. \(\underline{{\rm Optimal \ Control \ Applications \ and \ Methods}}\), 24(3):153–172, 2003.

    Google Scholar 

  12. I. Karamouzas, B. Skinner, and S. J. Guy. Universal power law governing pedestrian interactions. \(\underline{{\rm Phys. \ Rev. \ Lett.}}\), 113:238701, 2014.

    Google Scholar 

  13. R. A. Knepper and D. Rus. Pedestrian-inspired sampling-based multi-robot collision avoidance. In \(\underline{{\rm RO\text{-}MAN}}\), pages 94–100. IEEE, 2012.

    Google Scholar 

  14. M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard. Feature-based prediction of trajectories for socially compliant navigation. In \(\underline{{\rm Proc. \ of \ Robotics: \ Science \ and \ Systems \ (RSS)}}\), Sydney, Australia, 2012.

    Google Scholar 

  15. C. I. Mavrogiannis and R. A. Knepper. Towards socially competent navigation of pedestrian environments. In \(\underline{{\rm Robotics: \ Science \ and \ Systems \ 2016 \ Workshop \ on \ Social \ Trust \ in \ Autonomous \ Robots}}\), 2016.

    Google Scholar 

  16. C. I. Mavrogiannis and R. A. Knepper. Interpretation and communication of pedestrian intentions using braid groups. In \(\underline{{\rm Workshop \ on \ Intention \ Recognition \ in \ Human\text{- }Robot \ Interaction, \ 11th \ ACM/IEEE \ International \ Conference \ on \ Human \ Robot \ Interaction HRI)}}\), 2016.

    Google Scholar 

  17. M. Moussaïd, D. Helbing, and G. Theraulaz. How simple rules determine pedestrian behavior and crowd disasters. \(\underline{{\rm Proceedings \ of \ the \ National \ Academy \ of \ Sciences}}\), 108(17): 6884–6888, Apr. 2011.

    Google Scholar 

  18. J. J. Park, C. Johnson, and B. Kuipers. Robot navigation with model predictive equilibrium point control. In \(\underline{{\rm Intelligent \ Robots \ and \ Systems \ (IROS), \ 2012 \ IEEE/RSJ \ International \ Conference \ on}}\), pages 4945–4952. IEEE, 2012.

    Google Scholar 

  19. S. Pellegrini, A. Ess, K. Schindler, and L. J. V. Gool. You’ll never walk alone: Modeling social behavior for multi-target tracking. In \(\underline{{\rm ICCV}}\), pages 261–268. IEEE Computer Society, 2009.

    Google Scholar 

  20. E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Siméon. A human aware mobile robot motion planner. \(\underline{{\rm IEEE \ Transactions \ on \ Robotics}}\), 23(5):874–883, 2007.

    Google Scholar 

  21. J.-L. Thiffeault. Braids of entangled particle trajectories. \(\underline{{\rm Chaos}}\), 20(1), 2010.

    Google Scholar 

  22. J.-L. Thiffeault and M. Budišić. Braidlab: A software package for braids and loops, 2013–2016. URL http://arXiv.org/abs/1410.0849. Version 3.2.1.

  23. P. Trautman, J. Ma, R. M. Murray, and A. Krause. Robot navigation in dense human crowds: Statistical models and experimental studies of human-robot cooperation. \(\underline{{\rm Int. \ J. \ of \ Robotics \ Res.}}\), 34(3):335–356, 2015.

    Google Scholar 

  24. A. Treuille, S. Cooper, and Z. Popović. Continuum crowds. \(\underline{{\rm ACM \ Transactions \ on \ Graphics}}\), 25(3):1160–1168, July 2006.

    Google Scholar 

  25. J. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha. Reciprocal \(\underline{{\rm n}}\)-body collision avoidance. In \(\underline{{\rm Robotics \ Research \ \text{- } \ The \ 14th \ International \ Symposium, \ ISRR \ 2009, \ August \ 31 \ \text{- } \ September \ 3, \ 2009, \ Lucerne, \ Switzerland}}\), pages 3–19, 2009.

    Google Scholar 

  26. N. H. Wolfinger. Passing Moments: Some Social Dynamics of Pedestrian Interaction. \(\underline{{\rm Journal \ of \ Contemporary \ Ethnography}}\), 24(3):323–340, 1995.

    Google Scholar 

  27. J. Yen. Finding the k shortest loopless paths in a network. \(\underline{{\rm management \ Science}}\), pages 712–716, 1971.

    Google Scholar 

  28. B. Zhou, X. Tang, and X. Wang. Learning collective crowd behaviors with dynamic pedestrian-agents. \(\underline{{\rm International \ Journal \ of \ Computer \ Vision}}\), 111(1):50–68, 2015.

    Google Scholar 

  29. B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa. Planning-based prediction for pedestrians. In \(\underline{{\rm Proc. \ of \ the \ International \ Conference \ on \ Intelligent \ Robots \ and \ Systems}}\), 2009.

    Google Scholar 

  30. G. M. Ziegler. \(\underline{{\rm Lectures \ on \ polytopes}}\). Springer-Verlag, New York, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoforos I. Mavrogiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mavrogiannis, C.I., Knepper, R.A. (2020). Decentralized Multi-Agent Navigation Planning with Braids. In: Goldberg, K., Abbeel, P., Bekris, K., Miller, L. (eds) Algorithmic Foundations of Robotics XII. Springer Proceedings in Advanced Robotics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-43089-4_56

Download citation

Publish with us

Policies and ethics