Skip to main content

Language-Guided Sampling-based Planning using Temporal Relaxation

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XII

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 13))

Abstract

In this paper, we focus on robot motion planning from timed temporal logic specifications. We propose a sampling-based algorithm and an associated language-guided biasing scheme. We leverage the notion of temporal relaxation of time-window temporal logic formulae (TWTL) to reformulate the temporal logic synthesis problem into an optimization problem. Our algorithm exhibits an exploration-exploitation structure, but retains probabilistic completeness. Moreover, if the problem does not have a solution due to time constraints, the algorithm returns a candidate path that satisfies a minimally relaxed version of the specification. The path may inform operators about timing problems with the specification or the system. We provide simulations to highlight the performance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aksaray, D., Vasile, C.I., Belta, C.: Dynamic Routing of Energy-Aware Vehicles with Temporal Logic Constraints. In: IEEE International Conference on Robotics and Automation. pp. 3141–3146. Stockholm, Sweden (May 2016)

    Google Scholar 

  2. Aydin Gol, E., Lazar, M., Belta, C.: Language-Guided Controller Synthesis for Linear Systems. IEEE Trans. on Automatic Control 59(5), 1163–1176 (2014)

    Google Scholar 

  3. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Annals of Mathematics and Artificial Intelligence 22(1-2), 5–27

    Google Scholar 

  4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

    Google Scholar 

  5. Belta, C., Isler, V., Pappas, G.J.: Discrete abstractions for robot planning and control in polygonal environments. IEEE Trans. on Robotics 21(5), 864–874 (2005)

    Google Scholar 

  6. Bhatia, A., Kavraki, L., Vardi, M.: Sampling-based motion planning with temporal goals. In: IEEE International Conference on Robotics and Automation (2010)

    Google Scholar 

  7. Canny, J.F.: The Complexity of Robot Motion Planning. MIT Press, USA (1988)

    Google Scholar 

  8. Chen, Y., Tumova, J., Belta, C.: LTL Robot Motion Control based on Automata Learning of Environmental Dynamics. In: IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA (2012)

    Google Scholar 

  9. Choset, H., Lynch, K., et al.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston, MA (2005)

    Google Scholar 

  10. Ding, X.C., Kloetzer, M., et al.: Formal Methods for Automatic Deployment of Robotic Teams. IEEE Robotics and Automation Magazine 18, 75–86 (2011)

    Google Scholar 

  11. Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems. Autonomous Agents and Multi-Agent Systems 19(3), 332–377 (Feb 2009)

    Google Scholar 

  12. Gol, E.A., Belta, C.: Time-Constrained Temporal Logic Control of Multi-Affine Systems. Nonlinear Analysis: Hybrid Systems 10, 21–23 (2013)

    Google Scholar 

  13. Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under local LTL specifications. International Journal of Robotics Research 34(2), 218–235 (2015)

    Google Scholar 

  14. Jha, S.K., Clarke, E.M., et al.: A bayesian approach to model checking biological systems. In: Computational Methods in Systems Biology. Springer-Verlag (2009)

    Google Scholar 

  15. Karaman, S., Frazzoli, E.: Sampling-based Motion Planning with Deterministic \(\mu \)-Calculus Specifications. In: IEEE Conference on Decision and Control (2009)

    Google Scholar 

  16. Karaman, S., Frazzoli, E.: Sampling-based Algorithms for Optimal Motion Planning. International Journal of Robotics Research 30(7), 846–894 (June 2011)

    Google Scholar 

  17. Karaman, S., Frazzoli, E.: Sampling-based Optimal Motion Planning with Deterministic \(\mu \)-Calculus Specifications. In: American Control Conference (2012)

    Google Scholar 

  18. Kavraki, L., Svestka, P., et al.: Probabilistic roadmaps for path planning in highdimensional configuration spaces. IEEE Transactions on Robotics and Automation 12(4), 566–580 (1996)

    Google Scholar 

  19. Koymans, R.: Specifying real-time properties with metric temporal logic. Realtime systems 2(4), 255–299 (1990)

    Google Scholar 

  20. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.:Where’s Waldo? Sensor-based temporal logic motion planning. In: IEEE International Conference on Robotics and Automation. pp. 3116–3121 (2007)

    Google Scholar 

  21. Lahijanian, M., Almagor, S., et al.: This Time the Robot Settles for a Cost: A Quantitative Approach to Temporal Logic Planning with Partial Satisfaction. In: AAAI Conference on Artificial Intelligence. pp. 3664–3671. Austin, Texas (2015)

    Google Scholar 

  22. LaValle, S.M., Kuffner, J.J.: Randomized Kinodynamic Planning. International Journal of Robotics Research 20(5), 378–400

    Google Scholar 

  23. Luo, R., Valenzano, R.A., et al.: Using Metric Temporal Logic to Specify Scheduling Problems. In: Principles of Knowledge Representation and Reasoning (2016)

    Google Scholar 

  24. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pp. 152–166. Springer (2004)

    Google Scholar 

  25. Maly, M., Lahijanian, M., et al.: Iterative Temporal Motion Planning for Hybrid Systems in Partially Unknown Environments. In: Int. Conference on Hybrid Systems: Computation and Control (2013)

    Google Scholar 

  26. Nakagawa, S., Hasuo, I.: Near-Optimal Scheduling for LTL with Future Discounting. In: Ganty, P., Loreti, M. (eds.) Trustworthy Global Computing, pp. 112–130. No. 9533 in Lecture Notes in Computer Science, Springer (2015)

    Google Scholar 

  27. Pavone, M., Bisnik, N., et al.: A stochastic and dynamic vehicle routing problem with time windows and customer impatience. Mobile Networks and Applications 14(3), 350–364 (2009)

    Google Scholar 

  28. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Motion Planning with Dynamics by a Synergistic Combination of Layers of Planning. IEEE Trans. on Robotics 26(3), 469–482 (2010)

    Google Scholar 

  29. Reyes Castro, L., Chaudhari, P., et al.: Incremental sampling-based algorithm for minimum-violation motion planning. In: IEEE Conference on Decision and Control. pp. 3217–3224 (2013)

    Google Scholar 

  30. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations research 35(2), 254–265 (1987)

    Google Scholar 

  31. Tkachev, I., Abate, A.: Formula-free Finite Abstractions for Linear Temporal Verification of Stochastic Hybrid Systems. In: Int. Conference on Hybrid Systems: Computation and Control. Philadelphia, PA (2013)

    Google Scholar 

  32. Tumova, J., Marzinotto, A., et al.: Maximally satisfying LTL action planning. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. pp. 1503–1510 (2014)

    Google Scholar 

  33. Tumova, J., Hall, G.C., et al.: Least-violating Control Strategy Synthesis with Safety Rules. In: Hybrid Systems: Computation and Control. pp. 1–10 (2013)

    Google Scholar 

  34. Vasile, C., Belta, C.: Sampling-Based Temporal Logic Path Planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  35. Vasile, C.I., Aksaray, D., Belta, C.: Time Window Temporal Logic. Theoretical Computer Science p. (submitted), http://arxiv.org/abs/1602.04294

  36. Vasile, C.I., Belta, C.: An Automata-Theoretic Approach to the Vehicle Routing Problem. In: Robotics: Science and Systems Conference. USA (2014)

    Google Scholar 

  37. Wolff, E.M., Topcu, U., Murray, R.M.: Automaton-guided controller synthesis for nonlinear systems with temporal logic. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 4332–4339 (2013)

    Google Scholar 

  38. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding Horizon Temporal Logic Planning for Dynamical Systems. In: Conference on Decision and Control (2009)

    Google Scholar 

  39. Yoo, C., Fitch, R., Sukkarieh, S.: Probabilistic temporal logic for motion planning with resource threshold constraints (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian-Ioan Vasile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Penedo, F., Vasile, CI., Belta, C. (2020). Language-Guided Sampling-based Planning using Temporal Relaxation. In: Goldberg, K., Abbeel, P., Bekris, K., Miller, L. (eds) Algorithmic Foundations of Robotics XII. Springer Proceedings in Advanced Robotics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-43089-4_9

Download citation

Publish with us

Policies and ethics