Skip to main content

Common Vector Approach Based Image Gradients Computation for Edge Detection

  • Conference paper
  • First Online:
Book cover Mathematical Aspects of Computer and Information Sciences (MACIS 2019)

Abstract

In this study, the concept of Common Vector Approach (CVA) is adopted for image gradients computation in terms of revealing edge maps stated on images. Firstly, noise stated on image is smoothed by Gaussian filtering, secondly gradient map computation using CVA is carried out, then the angle and direction maps are obtained from the gradient map and lastly peak points are selected and a smart routing procedure is performed to linking them. With an unusual methodology, the derivatives of image through vertical and horizontal directions have obtained by utilizing the CVA, which is the crucial step and gained the novelty to this work. To compare results objectively, we have judged the performance with respect to a comparison metric called ROC Curve analysis. As a contribution to the edge detection area, CVA-ED presents satisfactory results and edge maps produced can be used in the tasks of object tracking, motion estimation and image retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, T., Lee, S., Paik, J.: Combined shape and feature-based video analysis and its application to non-rigid object tracking. IET Image Process. 5, 87–100 (2011)

    Article  Google Scholar 

  2. Paul, A., Wu, J., Yang, J.-F., Jeong, J.: Gradient-based edge detection for motion estimation in H. 264/AVC. IET Image Process. 5, 323–327 (2011)

    Article  Google Scholar 

  3. Singh, C., Pooja: Local and global features based image retrieval system using orthogonal radial moments. Opt. Lasers Eng. 50, 655–667 (2012)

    Google Scholar 

  4. Sobel, I., Feldman, G.: A 3x3 isotropic gradient operator for image processing. A Talk at the Stanford Artificial Project, pp. 271–272 (1968)

    Google Scholar 

  5. Roberts, L.: Machine perception of three dimensional solids. In: Tippet, J., et al. (eds.) Optical and Electro-Optical Information Processing. MIT Press, Cambridge (1965)

    Google Scholar 

  6. Prewitt, J.M.: Object Enhancement and Extraction. Academic Press, New York (1970)

    Google Scholar 

  7. Scharr, H.: Optimal operators in digital image processing (2000)

    Google Scholar 

  8. Peng, W., Qichao, C.: A novel SVM-based edge detection method. Phys. Procedia 24, 2075–2082 (2012)

    Article  Google Scholar 

  9. Qian, Z., Wang, W., Qiao, T.: An edge detection method in DCT domain. Procedia Eng. 29, 344–348 (2012)

    Article  Google Scholar 

  10. Topal, C., Akinlar, C.: Edge drawing: a combined real-time edge and segment detector. J. Vis. Commun. Image Represent. 23, 862–872 (2012)

    Article  Google Scholar 

  11. Li, B., Söderström, U., Ur Réhman, S., Li, H.: Restricted hysteresis reduce redundancy in edge detection. J. Signal Inf. Process. 4, 158–163 (2013)

    Google Scholar 

  12. Ray, K.: Unsupervised edge detection and noise detection from a single image. Pattern Recogn. 46, 2067–2077 (2013)

    Article  Google Scholar 

  13. Flores-Vidal, P.A., Olaso, P., Gómez, D., Guada, C.: A new edge detection method based on global evaluation using fuzzy clustering. Soft. Comput. 23, 1809–1821 (2019)

    Article  Google Scholar 

  14. Kimia, B.B., Li, X., Guo, Y., Tamrakar, A.: Differential geometry in edge detection: accurate estimation of position, orientation and curvature. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1573–1586 (2018)

    Article  Google Scholar 

  15. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B Biol. Sci. 207, 187–217 (1980)

    Article  Google Scholar 

  16. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  17. Wong, Y.-P., Soh, V.C.-M., Ban, K.-W., Bau, Y.-T.: Improved canny edges using ant colony optimization. In: 2008 Fifth International Conference on Computer Graphics, Imaging and Visualisation, CGIV 2008, pp. 197–202. IEEE (2008)

    Google Scholar 

  18. Bernal, J.: Linking Canny edge pixels with pseudo-watershed lines (2010)

    Google Scholar 

  19. Gulmezoglu, M.B., Dzhafarov, V., Keskin, M., Barkana, A.: A novel approach to isolated word recognition. IEEE Trans. Speech Audio Process. 7, 620–628 (1999)

    Article  Google Scholar 

  20. Gülmezoğlu, M.B., Dzhafarov, V., Edizkan, R., Barkana, A.: The common vector approach and its comparison with other subspace methods in case of sufficient data. Comput. Speech Lang. 21, 266–281 (2007)

    Article  Google Scholar 

  21. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  22. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  23. Shih, F.Y., Cheng, S.: Adaptive mathematical morphology for edge linking. Inf. Sci. 167, 9–21 (2004)

    Article  MathSciNet  Google Scholar 

  24. Jevtić, A., Melgar, I., Andina, D.: Ant based edge linking algorithm. In: 2009 35th Annual Conference of IEEE Industrial Electronics, IECON 2009, pp. 3353–3358. IEEE (2009)

    Google Scholar 

  25. Rahebi, J., Elmi, Z., Shayan, K.: Digital image edge detection using an ant colony optimization based on genetic algorithm. In: 2010 IEEE Conference on Cybernetics and Intelligent Systems (CIS), pp. 145–149. IEEE (2010)

    Google Scholar 

  26. Heath, M.D., Sarkar, S., Sanocki, T., Bowyer, K.W.: A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 19, 1338–1359 (1997)

    Article  Google Scholar 

  27. Bowyer, K., Kranenburg, C., Dougherty, S.: Edge detector evaluation using empirical ROC curves. Comput. Vis. Image Underst. 84, 77–103 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahin Isik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Isik, S., Ozkan, K. (2020). Common Vector Approach Based Image Gradients Computation for Edge Detection. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2019. Lecture Notes in Computer Science(), vol 11989. Springer, Cham. https://doi.org/10.1007/978-3-030-43120-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43120-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43119-8

  • Online ISBN: 978-3-030-43120-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics