Skip to main content

Electronic and Optical Properties of Carbon Nanotubes Directed to Their Applications in Solar Cells

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Abstract

We calculate electronic and optical properties of a series of finite carbon nanotubes. Where available, our calculations exhibit good consistency with experimental data. Our study is directed towards potential application of carbon nanotubes in solar cells, constructed in a layer architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png

  2. Janssen, R.A.J., Nelson, J.: Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 25, 1847–1858 (2013). https://doi.org/10.1002/adma.201202873

    Article  Google Scholar 

  3. Scharber, M.C., Sariciftci, N.S.: Efficiency of bulk-heterojunction solar cells. Prog. Polym. Sci. 38, 1929–1940 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.001

    Article  Google Scholar 

  4. Heeger, A.J.: Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001). https://doi.org/10.1002/1521-3773(20010716)40:14$<$2591::AID-ANIE2591$>$3.0.CO;2-0

  5. Lunt, R.R., Holmes, R.J.: Small-molecule and vapor-deposited organic photovoltaics. In: Rand, B.P., Richter, H. (eds.) Organic Solar Cells: Fundamentals, Devices, and Upscaling. CRC Press, Taylor & Francis Group, Boca Raton (2014). https://doi.org/10.4032/9789814463669

    Chapter  Google Scholar 

  6. Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986). https://doi.org/10.1063/1.96937

    Article  Google Scholar 

  7. Chu, C.W., Shao, Y., Shrotriya, V., Yang, Y.: Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions. Appl. Phys. Lett. 86, 243506 (2005). https://doi.org/10.1063/1.1946184

    Article  Google Scholar 

  8. Terao, Y., Sasabe, H., Adachi, C.: Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells. Appl. Phys. Lett. 90, 103515 (2007). https://doi.org/10.1063/1.2711525

    Article  Google Scholar 

  9. Xue, J., Uchida, S., Rand, B.P., Forrest, S.R.: Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl. Phys. Lett. 85, 5757–5759 (2004). https://doi.org/10.1063/1.1829776

    Article  Google Scholar 

  10. Yu, G., Heeger, A.J.: Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J. Appl. Phys. 78, 4510–4515 (1995). https://doi.org/10.1063/1.359792

    Article  Google Scholar 

  11. Halls, J.J.M., et al.: Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995). https://doi.org/10.1038/376498a0

    Article  Google Scholar 

  12. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995). https://doi.org/10.1126/science.270.5243.1789

    Article  Google Scholar 

  13. Yang, C.Y., Heeger, A.J.: Morphology of composites of semiconducting polymers mixed with C\(_{60}\). Synth. Met. 83, 85–88 (1996). https://doi.org/10.1016/S0379-6779(97)80058-6

    Article  Google Scholar 

  14. Collins, S.D., Ran, N.A., Heiber, M.C., Nguyen, T.-Q.: Small is powerful: recent progress in solution-processed small molecule solar cells. Adv. Energy Mater. 7(10), 1602242 (2017). https://doi.org/10.1002/aenm.201602242

    Article  Google Scholar 

  15. Moritsubo, S., et al.: Exciton diffusion in air-suspended single-walled CNTs. Phys. Rev. Lett. 104, 247402 (2010). https://doi.org/10.1103/PhysRevLett.104.247402

    Article  Google Scholar 

  16. Yoshikawa, K., Matsuda, K., Kanemitsu, Y.: Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy. J. Phys. Chem. C 114, 4353–4356 (2010). https://doi.org/10.1021/jp911518h

    Article  Google Scholar 

  17. Sgobba, V., Guldi, D.M.: Carbon nanotubes as integrative materials for organic photovoltaic devices. J. Mater. Chem. 18, 153–157 (2008). https://doi.org/10.1039/B713798M

    Article  Google Scholar 

  18. Fox, M.: Optical Properties of Solids. Clarendon Press, Oxford (2010)

    Google Scholar 

  19. Kataura, H., et al.: Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555–2558 (1999). https://doi.org/10.1016/S0379-6779(98)00278-1

    Article  Google Scholar 

  20. Baker, B.A., Zhang, H., Cha, T.-G., Choi, J.H.: Carbon nanotubes sollar cells. In: Yamashita, S., Saito, Y., Choi, J.H. (eds.) Carbon Nanotubes and Graphene for Photonic Applications. Woodhead Publishing Series in Electronic and Optical Materials, pp. 241–269. Woodhead Publishing, Cambridge (2013)

    Chapter  Google Scholar 

  21. Cataldo, S., Menna, E., Salice, P., Pignataro, B.: Carbon nanotubes and organic solar cells. Energy Environ. Sci. 5(3), 5919–5940 (2012). https://doi.org/10.1039/C1EE02276H

    Article  Google Scholar 

  22. Kymakis, E., Amaratunga, G.A.J.: Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112–114 (2002). https://doi.org/10.1063/1.1428416

    Article  Google Scholar 

  23. Lee, U.J.: Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 87, 073101 (2005). https://doi.org/10.1063/1.2010598

    Article  Google Scholar 

  24. Pradhan, B., Batabyal, S.K., Pal, A.J.: Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl. Phys. Lett. 88, 093106 (2006). https://doi.org/10.1063/1.2179372

    Article  Google Scholar 

  25. Kymakis, E., Amaratunga, G.A.J.: Carbon nanotubes as electron acceptors in polymeric photovoltaics. Rev. Adv. Mater. Sci. 10, 300–305 (2005)

    Google Scholar 

  26. Spataru, C.D., Ismail-Beigi, S., Capaz, R.B., Louie, S.G.: Quasiparticle and excitonic effects in the optical response of nanotubes and nanoribbons. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes. TAP, vol. 111, pp. 195–228. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72865-8_6

    Chapter  Google Scholar 

  27. Spataru, C.D., Ismail-Beigi, S., Benedict, L.X., Louie, S.G.: Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes. Appl. Phys. A 78, 1129–1136 (2004). https://doi.org/10.1007/s00339-003-2464-2

    Article  Google Scholar 

  28. Frisch, M.J., et al.: Gaussian 09, Revision A.02. Gaussian Inc., Wallingford (2009)

    Google Scholar 

  29. Piela, L.: Ideas of Quantum Chemistry. Elsevier, Amsterdam (2019)

    Google Scholar 

  30. Soler, J.M., et al.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745–2779 (2002). https://doi.org/10.1088/0953-8984/14/11/302

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to anonymous referee for questions, remarks and constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Wojtkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wojtkiewicz, J., Brzostowski, B., Pilch, M. (2020). Electronic and Optical Properties of Carbon Nanotubes Directed to Their Applications in Solar Cells. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43222-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43221-8

  • Online ISBN: 978-3-030-43222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics