Abstract
We calculate electronic and optical properties of a series of finite carbon nanotubes. Where available, our calculations exhibit good consistency with experimental data. Our study is directed towards potential application of carbon nanotubes in solar cells, constructed in a layer architecture.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
https://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png
Janssen, R.A.J., Nelson, J.: Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 25, 1847–1858 (2013). https://doi.org/10.1002/adma.201202873
Scharber, M.C., Sariciftci, N.S.: Efficiency of bulk-heterojunction solar cells. Prog. Polym. Sci. 38, 1929–1940 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.001
Heeger, A.J.: Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001). https://doi.org/10.1002/1521-3773(20010716)40:14$<$2591::AID-ANIE2591$>$3.0.CO;2-0
Lunt, R.R., Holmes, R.J.: Small-molecule and vapor-deposited organic photovoltaics. In: Rand, B.P., Richter, H. (eds.) Organic Solar Cells: Fundamentals, Devices, and Upscaling. CRC Press, Taylor & Francis Group, Boca Raton (2014). https://doi.org/10.4032/9789814463669
Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986). https://doi.org/10.1063/1.96937
Chu, C.W., Shao, Y., Shrotriya, V., Yang, Y.: Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions. Appl. Phys. Lett. 86, 243506 (2005). https://doi.org/10.1063/1.1946184
Terao, Y., Sasabe, H., Adachi, C.: Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells. Appl. Phys. Lett. 90, 103515 (2007). https://doi.org/10.1063/1.2711525
Xue, J., Uchida, S., Rand, B.P., Forrest, S.R.: Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl. Phys. Lett. 85, 5757–5759 (2004). https://doi.org/10.1063/1.1829776
Yu, G., Heeger, A.J.: Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J. Appl. Phys. 78, 4510–4515 (1995). https://doi.org/10.1063/1.359792
Halls, J.J.M., et al.: Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995). https://doi.org/10.1038/376498a0
Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995). https://doi.org/10.1126/science.270.5243.1789
Yang, C.Y., Heeger, A.J.: Morphology of composites of semiconducting polymers mixed with C\(_{60}\). Synth. Met. 83, 85–88 (1996). https://doi.org/10.1016/S0379-6779(97)80058-6
Collins, S.D., Ran, N.A., Heiber, M.C., Nguyen, T.-Q.: Small is powerful: recent progress in solution-processed small molecule solar cells. Adv. Energy Mater. 7(10), 1602242 (2017). https://doi.org/10.1002/aenm.201602242
Moritsubo, S., et al.: Exciton diffusion in air-suspended single-walled CNTs. Phys. Rev. Lett. 104, 247402 (2010). https://doi.org/10.1103/PhysRevLett.104.247402
Yoshikawa, K., Matsuda, K., Kanemitsu, Y.: Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy. J. Phys. Chem. C 114, 4353–4356 (2010). https://doi.org/10.1021/jp911518h
Sgobba, V., Guldi, D.M.: Carbon nanotubes as integrative materials for organic photovoltaic devices. J. Mater. Chem. 18, 153–157 (2008). https://doi.org/10.1039/B713798M
Fox, M.: Optical Properties of Solids. Clarendon Press, Oxford (2010)
Kataura, H., et al.: Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555–2558 (1999). https://doi.org/10.1016/S0379-6779(98)00278-1
Baker, B.A., Zhang, H., Cha, T.-G., Choi, J.H.: Carbon nanotubes sollar cells. In: Yamashita, S., Saito, Y., Choi, J.H. (eds.) Carbon Nanotubes and Graphene for Photonic Applications. Woodhead Publishing Series in Electronic and Optical Materials, pp. 241–269. Woodhead Publishing, Cambridge (2013)
Cataldo, S., Menna, E., Salice, P., Pignataro, B.: Carbon nanotubes and organic solar cells. Energy Environ. Sci. 5(3), 5919–5940 (2012). https://doi.org/10.1039/C1EE02276H
Kymakis, E., Amaratunga, G.A.J.: Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112–114 (2002). https://doi.org/10.1063/1.1428416
Lee, U.J.: Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 87, 073101 (2005). https://doi.org/10.1063/1.2010598
Pradhan, B., Batabyal, S.K., Pal, A.J.: Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl. Phys. Lett. 88, 093106 (2006). https://doi.org/10.1063/1.2179372
Kymakis, E., Amaratunga, G.A.J.: Carbon nanotubes as electron acceptors in polymeric photovoltaics. Rev. Adv. Mater. Sci. 10, 300–305 (2005)
Spataru, C.D., Ismail-Beigi, S., Capaz, R.B., Louie, S.G.: Quasiparticle and excitonic effects in the optical response of nanotubes and nanoribbons. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes. TAP, vol. 111, pp. 195–228. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72865-8_6
Spataru, C.D., Ismail-Beigi, S., Benedict, L.X., Louie, S.G.: Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes. Appl. Phys. A 78, 1129–1136 (2004). https://doi.org/10.1007/s00339-003-2464-2
Frisch, M.J., et al.: Gaussian 09, Revision A.02. Gaussian Inc., Wallingford (2009)
Piela, L.: Ideas of Quantum Chemistry. Elsevier, Amsterdam (2019)
Soler, J.M., et al.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745–2779 (2002). https://doi.org/10.1088/0953-8984/14/11/302
Acknowledgment
We are grateful to anonymous referee for questions, remarks and constructive criticism.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wojtkiewicz, J., Brzostowski, B., Pilch, M. (2020). Electronic and Optical Properties of Carbon Nanotubes Directed to Their Applications in Solar Cells. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-43222-5_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43221-8
Online ISBN: 978-3-030-43222-5
eBook Packages: Computer ScienceComputer Science (R0)