Abstract
Recently, we have proposed several improvements of the standard monotonicity approach to solving parametric interval linear systems. The obtained results turned out to be very promising; i.e., we have achieved narrower bounds, while generally preserving the computational time. In this paper we propose another improvements, which aim to further decrease the widths of the interval bounds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
All the methods used in the computation are based on revised affine forms.
- 2.
We first substitute interval parameters by respective revised affine forms and then we performs computation of them.
- 3.
For details on Interval-affine Gauss-Seidel iteration see [18].
- 4.
Some attempts to use parallelization for increasing the efficiency of a few methods for solving interval parametric linear systems are described in [7].
References
Comba, J., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In: Proceedings of SIBGRAPI 1993 VI Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens (Recife, BR), pp. 9–18 (1993)
Dehghani-Madiseh, M., Dehghan, M.: Parametric AE-solution sets to the parametric linear systems with multiple right-hand sides and parametric matrix equation \(A(p)X = B(p)\). Numer. Algorithms 73(1), 245–279 (2016). https://doi.org/10.1007/s11075-015-0094-3
Hladík, M.: Enclosures for the solution set of parametric interval linear systems. Int. J. Appl. Math. Comput. Sci. 22(3), 561–574 (2012)
Hladík, M.: Description of symmetric and skew-symmetric solution set. SIAM J. Matrix Anal. Appl. 30(2), 509–521 (2008)
Horáček, J., Hladík, M., Černý, M.: Interval linear algebra and computational complexity. In: Bebiano, N. (ed.) MAT-TRIAD 2015. SPMS, vol. 192, pp. 37–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49984-0_3
Kolev, L.: Parameterized solution of linear interval parametric systems. Appl. Math. Comput. 246, 229–246 (2014)
Král, O., Hladík, M.: Parallel computing of linear systems with linearly dependent intervals in MATLAB. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10778, pp. 391–401. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78054-2_37
Mayer, G.: An Oettli-Prager-like theorem for the symmetric solution set and for related solution sets. SIAM J. Matrix Anal. Appl. 33(3), 979–999 (2012)
Messine, F.: New affine forms in interval branch and bound algorithms. Technical report, R2I 99–02, Université de Pau et des Pays de l’Adour (UPPA), France (1999)
Neumaier, A., Pownuk, A.: Linear systems with large uncertainties, with applications to truss structures. Reliab. Comput. 13, 149–172 (2007). https://doi.org/10.1007/s11155-006-9026-1
Popova, E.: Computer-assisted proofs in solving linear parametric problems. In: 12th GAMM/IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN 2006, Duisburg, Germany, p. 35 (2006)
Popova, E.D.: Enclosing the solution set of parametric interval matrix equation \(A(p)X = B(p)\). Numer. Algorithms 78(2), 423–447 (2018). https://doi.org/10.1007/s11075-017-0382-1
Rohn, J.: A method for handling dependent data in interval linear systems. Technical report, 911, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2004). https://asepactivenode.lib.cas.cz/arl-cav/en/contapp/?repo=crepo1&key=20925094170
Skalna, I.: On checking the monotonicity of parametric interval solution of linear structural systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1400–1409. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68111-3_148
Skalna, I.: Parametric Interval Algebraic Systems. Studies in Computational Intelligence. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75187-0
Skalna, I., Hladík, M.: A new algorithm for Chebyshev minimum-error multiplication of reduced affine forms. Numer. Algorithms 76(4), 1131–1152 (2017). https://doi.org/10.1007/s11075-017-0300-6
Skalna, I., Duda, J.: A study on vectorisation and paralellisation of the monotonicity approach. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 455–463. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_42
Skalna, I., Hladík, M.: A new method for computing a \(p\)-solution to parametric interval linear systems with affine-linear and nonlinear dependencies. BIT Numer. Math. 57(4), 1109–1136 (2017). https://doi.org/10.1007/s10543-017-0679-4
Skalna, I., Hladík, M.: Enhancing monotonicity checking in parametric interval linear systems. In: Martel, M., Damouche, N., Sandretto, J.A.D. (eds.) Trusted Numerical Computations, TNC 2018. Kalpa Publications in Computing, vol. 8, pp. 70–83. EasyChair (2018)
Vu, X.H., Sam-Haroud, D., Faltings, B.: A generic scheme for combining multiple inclusion representations in numerical constraint propagation. Technical report no. IC/2004/39, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland, April 2004. http://liawww.epfl.ch/Publications/Archive/vuxuanha2004a.pdf
Acknowledgments
M. Hladík was supported by the Czech Science Foundation Grant P403-18-04735S.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Skalna, I., Pietroń, M., Hladík, M. (2020). Improvements of Monotonicity Approach to Solve Interval Parametric Linear Systems. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-43222-5_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43221-8
Online ISBN: 978-3-030-43222-5
eBook Packages: Computer ScienceComputer Science (R0)