Skip to main content

Lazy Stencil Integration in Multigrid Algorithms

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12043))

Abstract

Multigrid algorithms are among the most efficient solvers for elliptic partial differential equations. However, we have to invest into an expensive matrix setup phase before we kick off the actual solve. This assembly effort is non-negligible; particularly if the fine grid stencil integration is laborious. Our manuscript proposes to start multigrid solves with very inaccurate, geometric fine grid stencils which are then updated and improved in parallel to the actual solve. This update can be realised greedily and adaptively. We furthermore propose that any operator update propagates at most one level at a time, which ensures that multiscale information propagation does not hold back the actual solve. The increased asynchronicity, i.e. the laziness improves the runtime without a loss of stability if we make the grid update sequence take into account that multiscale operator information propagates at finite speed.

The work was funded by an EPSRC DTA PhD scholarship (award no. 1764342). It made use of the facilities of the Hamilton HPC Service of Durham University. The underlying project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 671698 (ExaHyPE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader, M., Schraufstetter, S., Vigh, C.A., Behrens, J.: Memory efficient adaptive mesh generation and implementation of multigrid algorithms using Sierpinski curves. Int. J. Comput. Sci. Eng. 4(1), 12–21 (2008)

    Google Scholar 

  2. Bastian, P., Wittum, G., Hackbusch, W.: Additive and multiplicative multi-grid–a comparison. Computing 60(4), 345–364 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bell, N., Dalton, S., Olson, L.N.: Exposing fine-grained parallelism in algebraic multigrid methods. SIAM J. Sci. Comput. 34(4), C123–C152 (2012)

    Article  MathSciNet  Google Scholar 

  4. Brandt, A., Brannick, J., Kahl, K., Livshits, I.: Bootstrap AMG. SIAM J. Sci. Comput. 33(2), 612–632 (2011)

    Article  MathSciNet  Google Scholar 

  5. Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T., McCormick, S., Ruge, J.: Adaptive smoothed aggregation (\(\alpha \) sa) multigrid. SIAM Rev. 47(2), 317–346 (2005)

    Article  MathSciNet  Google Scholar 

  6. Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T., McCormick, S., Ruge, J.: Adaptive algebraic multigrid. SIAM J. Sci. Com. 27(4), 1261–1286 (2006)

    Article  MathSciNet  Google Scholar 

  7. Charrier, D.E., Hazelwood, B., Kudryavtsev, A., Moskovsky, A., Tutlyaeva, E., Weinzierl, T.: Studies on the energy and deep memory behaviour of a cache-oblivious, task-based hyperbolic PDE solver. arXiv preprint arXiv:1810.03940 (2018)

  8. Cleary, A.J., Falgout, R.D., Henson, V.E., Jones, J.E.: Coarse-grid selection for parallel algebraic multigrid. In: Ferreira, A., Rolim, J., Simon, H., Teng, S.-H. (eds.) IRREGULAR 1998. LNCS, vol. 1457, pp. 104–115. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0018531

    Chapter  Google Scholar 

  9. Clevenger, T.C., Heister, T., Kanschat, G., Kronbichler, M.: A flexible, parallel, adaptive geometric multigrid method for fem. arXiv preprint arXiv:1904.03317 (2019)

  10. Dendy, J.E.: Black box multigrid. J. Comput. Phys. 48(3), 366–386 (1982)

    Article  MathSciNet  Google Scholar 

  11. Dick, C., Georgii, J., Westermann, R.: A hexahedral multigrid approach for simulating cuts in deformable objects. IEEE Trans. Visual. Comput. Graph. 17(11), 1663–1675 (2011)

    Article  Google Scholar 

  12. Dongarra, J., Hittinger, J., et al.: Applied Mathematics Research for Exascale Computing. http://www.netlib.org/utk/people/JackDongarra/PAPERS/doe-exascale-math-report.pdf. Accessed 14 Oct 2019

  13. Haber, E., Heldmann, S.: An octree multigrid method for quasi-static maxwell’s equations with highly discontinuous coefficients. J. Comput. Phys. 223(2), 783–796 (2007)

    Article  MathSciNet  Google Scholar 

  14. Microway: Detailed specifications of the intel xeon e5–2600v4 broadwell-ep processors. https://www.microway.com/knowledge-center-articles/detailed-specifications-of-the-intel-xeon-e5-2600v4-broadwell-ep-processors/. Accessed 14 Oct 2019

  15. Murray, C.D., Weinzierl, T.: Dynamically adaptive FAS for an additively damped AFAC variant. arXiv:1903.10367 (2019)

  16. Reps, B., Weinzierl, T.: Complex additive geometric multilevel solvers for Helmholtz equations on spacetrees. ACM Trans. Math. Softw. (TOMS) 44(1), 2 (2017)

    Article  MathSciNet  Google Scholar 

  17. Sampath, R.S., Adavani, S.S., Sundar, H., Lashuk, I., Biros, G.: Dendro: parallel algorithms for multigrid and AMR methods on 2:1 balanced octrees. In: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, p. 18. IEEE Press (2008)

    Google Scholar 

  18. Sampath, R.S., Biros, G.: A parallel geometric multigrid method for finite elements on octree meshes. SIAM J. Sci. Comput. 32(3), 1361–1392 (2010)

    Article  MathSciNet  Google Scholar 

  19. Sundar, H., Biros, G., Burstedde, C., Rudi, J., Ghattas, O., Stadler, G.: Parallel geometric-algebraic multigrid on unstructured forests of octrees. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, p. 43. IEEE Computer Society Press (2012)

    Google Scholar 

  20. Weinzierl, M., Weinzierl, T.: Quasi-matrix-free hybrid multigrid on dynamically adaptive Cartesian grids. ACM Trans. Math. Softw. 44(3), 32:1–32:44 (2018)

    Article  MathSciNet  Google Scholar 

  21. Weinzierl, T.: The peano software–parallel, automaton-based, dynamically adaptive grid traversals. ACM Trans. Math. Softw. (TOMS) 45(2), 14 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles D. Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murray, C.D., Weinzierl, T. (2020). Lazy Stencil Integration in Multigrid Algorithms. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12043. Springer, Cham. https://doi.org/10.1007/978-3-030-43229-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43229-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43228-7

  • Online ISBN: 978-3-030-43229-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics