Skip to main content

Performance Optimizations for Parallel Modeling of Solidification with Dynamic Intensity of Computation

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Abstract

In our previous works, a parallel application dedicated to the numerical modeling of alloy solidification was developed and tested using various programming environments on hybrid shared-memory platforms with multicore CPUs and manycore Intel Xeon Phi accelerators. While this solution allows obtaining a reasonable good performance in the case of the static intensity of computations, the performance results achieved for the dynamic intensity of computations indicates pretty large room for further optimizations.

In this work, we focus on improving the overall performance of the application with the dynamic computational intensity. For this aim, we propose to modify the application code significantly using the loop fusion technique. The proposed method permits us to execute all kernels in a single nested loop, as well as reduce the number of conditional operators performed within a single time step. As a result, the proposed optimizations allows increasing the application performance for all tested configurations of computing resources. The highest performance gain is achieved for a single Intel Xeon SP CPU, where the new code yields the speedup of up to 1.78 times against the original version.

The developed method is vital for further optimizations of the application performance. It allows introducing an algorithm for the dynamic workload prediction and load balancing in successive time steps of simulation. In this work, we propose the workload prediction algorithm with 1D computational map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrian, H., Spiradek-Hahn, K.: The simulation of dendritic growth in Ni-Cu alloy using the phase field model. Arch. Mater. Sci. Eng. 40(2), 89–93 (2009)

    Google Scholar 

  2. Benito, J.J., Ureñ, F., Gavete, L.: The generalized finite difference method. In: Àlvarez, M.P. (ed.) Leading-Edge Applied Mathematical Modeling Research, pp. 251–293. Nova Science Publishers, New York (2008)

    Google Scholar 

  3. Folch, R., Casademunt, J., Hernandez-Machado, A., Ramirez-Piscina, L.: Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. II. Numerical study. Phys. Rev. E 60(2), 1734–1740 (1999)

    Article  Google Scholar 

  4. Halbiniak, K., Wyrzykowski, R., Szustak, L., Olas, T.: Assessment of offload-based programming environments for hybrid CPU-MIC platforms in numerical modeling of solidification. Simul. Model. Pract. Theory 87, 48–72 (2018)

    Article  Google Scholar 

  5. Karma, A., Kessler, D., Levine, H.: Phase-field model of mode III dynamic fracture. Phys. Rev. Lett. 87(4), 045501 (2001). https://doi.org/10.1103/PhysRevLett.87.045501

    Article  Google Scholar 

  6. Kulawik, A.: The modeling of the phenomena of the heat treatment of the medium carbon steel. Wydawnictwo Politechnki Czestochowskiej, (281) (2013). (in Polish)

    Google Scholar 

  7. Provatas, N., Elder, K.: Phase-Field Methods in Materials Science and Engineering. Wiley, Weinheim (2010)

    Book  Google Scholar 

  8. Shimokawabe, T., et al.: Peta-scale phase-field simulation for dendritic solidification on the TSUBAME 2.0 supercomputer. In: Proceedings of the 2011 ACM/IEEE International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2011. IEEE Computer Society (2011). https://doi.org/10.1145/2063384.2063388

  9. Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17(7), 073001 (2009). https://doi.org/10.1088/0965-0393/17/7/073001

    Article  Google Scholar 

  10. Szustak, L., Halbiniak, K., Kulawik, A., Wrobel, J., Gepner, P.: Toward parallel modeling of solidification based on the generalized finite difference method using Intel Xeon Phi. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 411–422. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32149-3_39

    Chapter  Google Scholar 

  11. Szustak, L., Rojek, K., Olas, T., Kuczynski, L., Halbiniak, K., Gepner, P.: Adaptation of MPDATA heterogeneous stencil computation to Intel Xeon Phi coprocessor. Sci. Prog. (2015). https://doi.org/10.1155/2015/642705

    Article  Google Scholar 

  12. Szustak, L., Halbiniak, K., Kuczynski, L., Wrobel, J., Kulawik, A.: Porting and optimization of solidification application for CPU-MIC hybrid platforms. Int. J. High Perform. Comput. Appl. 32(4), 523–539 (2018)

    Article  Google Scholar 

  13. Takaki, T.: Phase-field modeling and simulations of dendrite growth. ISIJ Int. 54(2), 437–444 (2014)

    Article  Google Scholar 

  14. Warren, J.A., Boettinger, W.J.: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metall. Mater. 43(2), 689–703 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted with the financial support of the National Science Centre (Poland) under grants no. UMO-2017/26/D/ST6/00687. The authors are grateful to: (i) Intel Technology Poland and (ii) Czestochowa University of Technology (MICLAB project no. POIG.02.03.00.24-093/13) for granting access to HPC platforms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Halbiniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halbiniak, K., Szustak, L., Kulawik, A., Gepner, P. (2020). Performance Optimizations for Parallel Modeling of Solidification with Dynamic Intensity of Computation. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12043. Springer, Cham. https://doi.org/10.1007/978-3-030-43229-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43229-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43228-7

  • Online ISBN: 978-3-030-43229-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics