
Genetic Programming with Adaptive Search
Based on the Frequency of Features for
Dynamic Flexible Job Shop Scheduling

Fangfang Zhang1 ID , Yi Mei1 ID , Su Nguyen2 ID , and Mengjie Zhang1 ID

1 School of Engineering and Computer Science, Victoria University of Wellington,
PO BOX 600, Wellington 6140, New Zealand

{fangfang.zhang,yi.mei,mengjie.zhang}@ecs.vuw.ac.nz
2 Centre for Data Analytics and Cognition, La Trobe University, Victoria 3086,

Melbourne, Australia
P.Nguyen4@latrobe.edu.au

Abstract. Dynamic flexible job shop scheduling (DFJSS) is a very valu-
able practical application problem that can be applied in many fields such
as cloud computing and manufacturing. In DFJSS, machine assignment
and operation sequencing decisions need to be made simultaneously in
dynamic environments with unpredicted events such as new job arrivals.
Scheduling heuristic is an ideal candidate for solving the DFJSS prob-
lem due to its efficiency and simplicity. Genetic programming (GP) has
been successfully applied to evolve scheduling heuristics for job shop
scheduling automatically. However, GP has a huge search space, and the
traditional search algorithms do not utilise effectively the information ob-
tained from the evolutionary process. This paper proposes a new method
to make better use of the information during the evolutionary process of
GP to further enhance the ability of GP. To be specific, this paper pro-
poses two adaptive search strategies based on the frequency of features
in promising individuals to guide GP to evolve effective rules. This paper
examines the proposed algorithm on six different DFJSS scenarios. The
results show that the proposed GP with adaptive search can converge
faster and achieve significantly better performance than the GP without
adaptive search in most scenarios while no worse in all other scenarios
without increasing the computational cost.

Keywords: Adaptive search · Scheduling heuristic · Dynamic flexible
job shop scheduling · Genetic programming.

1 Introduction

Job shop scheduling (JSS) [1] is an important combinational optimisation prob-
lem, which has essential roles in all walks of life such as manufacturing [2,3] and
cloud computing [4]. The task in JSS is to process a number of jobs by a set of
machines. Each job has a sequence of operations. The goal is to optimise the ma-
chine resources to achieve the objectives such as minimising the max-flowtime.

https://orcid.org/0000-0001-5516-3972
https://orcid.org/0000-0003-0682-1363
https://orcid.org/0000-0002-1153-5022
https://orcid.org/0000-0003-4463-9538

2 F. Zhang et al.

Flexible JSS (FJSS) [5] is a variant of JSS which is better to reflect requirements
in real-world applications. In FJSS, an operation can be processed on a set of
machines. It indicates that two decisions need to be made simultaneously. One is
machine assignment (i.e. assign an operation to a particular machine), and the
other is operation sequencing (i.e. choose an operation as the next operation to
be processed by an idle machine). In addition, many practical scheduling prob-
lems are dynamically changing over time, for example, due to new job arrivals
[6,7]. Dynamic FJSS (DFJSS) is to consider FJSS under dynamic environments.

Scheduling heuristics such as dispatching rules [8] are widely used to han-
dle such kinds of dynamic problems. A scheduling heuristic is a heuristic that
works like a priority function to evaluate the priorities of operations and ma-
chines. To be specific, in DFJSS, a machine that has the highest priority value
based on the routing rule (i.e. routing scheduling heuristic) will be assigned a
job. An operation with the highest priority value based on the sequencing rule
(i.e. sequencing scheduling heuristic) will be chosen as the next operation to be
processed. There are some rules such as SPT (i.e. shortest processing time) and
WIQ (i.e. the workload in the queue of a machine) which have been identified as
effective rules for JSS. However, they are manually designed by experts, which
is time-consuming and not always available. In practical, it is hard to manually
design effective rules due to the complexity of the job shop environments.

Genetic programming (GP) [9], as a hyper-heuristic (GPHH) method, has
been successfully applied to automatically evolve scheduling heuristic for JSS
[10,11]. As a population-based algorithm, GP tries to improve the scheduling
heuristics (i.e. individuals) generation by generation. In traditional GP, features
are randomly chosen to build subtrees for mutation and generate individuals.
However, the importance of features can be different. Such a way that chooses
all the features randomly cannot fully play its role because the importance of
the features is ignored. The challenge is that the search space of GP is huge
(i.e. the individual can be a big tree), and the traditional search might not
be enough. This paper proposes the adaptive search to guide GP to the more
promising region by utilising the information during the evolutionary process.
The proposed algorithm aims to guide the behaviour of GP over time adaptively.

The key to the success of GP is that it can automatically detect important
features and optimise the structure of individuals guided by the fitness function.
From an evolutionary perspective, the individuals themselves, especially good
individuals, contain useful information which can be further utilised to improve
evolutionary efficiency. An advantage is that information generated during the
evolutionary process can be easily used without putting more extra effort to get
the information. In this paper, the frequency of features based on the individuals
that have good performance will be further used to guide GP to find more
effective rules for DFJSS adaptively. To this end, two adaptive search strategies
which can be realised by mutation and re-initialisation will be proposed.

The overall goal of this paper is to develop effective adaptive search strategies
with the frequency of features to guide GP to find effective scheduling heuris-
tics for DFJSS efficiently. The proposed algorithms are expected to speed up

GP with Adaptive Search Based on the Frequency of Features for DFJSS 3

the convergence of GP and find effective rules without additional computing
requirement. In particular, this paper has the following research objectives:

– Develop adaptive search strategies with the frequency of features in promis-
ing individuals to guide GP towards the more promising areas.

– Verify the effectiveness and efficiency of the proposed GP algorithm with
the adaptive strategy by comparing its performance and convergence speed
with the baseline GP.

– Analyse how the adaptive search affects the evolutionary process of GP.

2 Background

2.1 Dynamic Flexible Job Shop Scheduling

In FJSS problem, n jobs J = {J1, J2, ..., Jn} need to be processed by m machines
M = {M1,M2, ...,Mm}. Each job Jj has an arrival time at(Ji) and a sequence
of operations Oj = (Oj1, Oj2, ..., Oji). Each operation Oji can only be processed
by one of its optional machines π(Oji) and its processing time δ(Oji) depends
on the machine that processes it. It indicates that there are two decisions which
are routing decision and sequencing decision in FJSS. In DFJSS, not only two
decisions need to be made simultaneously, but also the dynamic events are nec-
essary to be taken into account when making schedules. This paper focuses on
one dynamic event (i.e. continuously arriving new jobs). That is, the information
of a job is unknown until its arrival time.

2.2 Genetic Programming Hyper-heuristic for DFJSS

A hyper-heuristic [12] is a heuristic search method that seeks to select or generate
heuristics to efficiently solve hard problems. The unique characteristic is that
hyper-heuristic works on heuristic search space instead of solution search space.

GP, as a hyper-heuristic method [13], has been successfully applied to more
informative scheduling heuristics for combinational optimisation problems such
as packing [14,15], timetabling [16,17] and JSS [18,19,20,21]. Scheduling heuris-
tics, including routing and sequencing rules, are needed in DFJSS in our research.
To follow the sequence constraint of operations of a job, this paper only starts to
allocate an operation when it becomes a ready operation. There are two sources
of ready operations. One is the first operation of a job. The second is the oper-
ation that its proceeding operation is just finished. Once an operation becomes
a ready operation (routing decision point), it will be allocated to the machine
by the routing rule. When a machine becomes idle, and its queue is not empty
(sequencing decision point), the sequencing rule will be triggered to choose the
next operation to be processed.

GP has shown its superiority in DFJSS [18,19]. However, most of the existing
works follow the traditional way of the evolutionary process of GP, which may
not enough due to its large search space. To this end, this paper introduces
the adaptive search to help GP evolve more effective scheduling heuristics (i.e.
routing rule and sequencing rule) for DFJSS.

4 F. Zhang et al.

3 The Proposed GP with Adaptive Search

In this paper, the adaptive search aims to guide the behaviour of the GP algo-
rithm over time by utilising the information generated during the evolutionary
process of GP. It is expected to speed up the convergence of GP and evolve
effective rules. It is not trivial to answer “when”, “how”, and “where” to apply
the adaptive search. These three research questions are investigated as follows.

Question 1: When to use the adaptive search?
This paper uses the adaptive strategy at every generation.
Question 2: How to use the adaptive search?
In this paper, the frequency of features is the number of occurrences of fea-

tures. The number of occurrences of features based on the entire top ten individu-
als (i.e. roughly 1% of the population size) will be utilised to guide the behaviour
of GP to improve its convergence speed and find more promising rules for DFJSS,
since top ten individuals have much better fitnesses than others. Based on the
number of occurrences of features, the probability of each feature is calculated.
The larger the number of the occurrence, the higher the probability that the fea-
ture is given. When generating new individuals and subtrees for mutation, the
features will be selected based on their probability. The higher the probability,
the easier the feature is to be selected for building new trees. The pseudo-code
of calculating the probabilities of features are shown in Algorithm 1.

Algorithm 1: Pseudo-code of calculating the probabilities of features

Input : Top ten individuals
Output: The probabilities of features probabilities

1: probabilities ← null
2: for i = 1 to |featureSize| do
3: occurrencei: count the number of occurrence of a feature in the top ten

individuals
4: end
5: sumOccurrences: sum up the occurrences of all features
6: for i = 1 to |featureSize| do
7: probabilityi = occurrencei

sumOccurrences

8: end
9: probabilities ← probabilityi

10: return probabilities

Question 3: Where to use the adaptive search?
During the evolutionary process of GP, there are two occasions using se-

lected features. One is when building subtree for mutation. The other is when
generating new individuals. To guide the behaviour of GP as much as possible,
it is straightforward to simply apply the adaptive search by mutation. Another
adaptive search strategy related to re-initialisation is also proposed in this paper.

Mutation. As a genetic operator, mutation aims to maintain the diversity of
the population by replacing one subtree with a randomly generated subtree. The
new individual produced by mutation can be very bad (i.e. too random). If the

GP with Adaptive Search Based on the Frequency of Features for DFJSS 5

Initialisation

Selection

Population Evaluation Occurrence of Features

Stop?

Population Reinitialisation

Evolution

Reproduction

Mutation

Crossover

End

No

Yes

Probability of Features

Fig. 1: The flowchart of the proposed GP with the adaptive search.

mutation direction can be guided to some extent, it may enhance the effectiveness
of mutation. The subtree that builds with the informed features has such a role
because it has a high chance to bring more useful building blocks.

Re-initialisation. The quality of individuals in the population can be dif-
ferent. Some individuals have good performance and have a higher chance to be
selected as parents to generate offspring. However, there still has a number of
individuals that will not contribute too much to the next generation due to their
lower performance. These kinds of individuals are useless to some extent. This
paper proposes to use a re-initialisation strategy to generate some useful indi-
viduals to the population to replace them at each generation. The reinitialised
new individuals generated based on the frequency of features are structurally
different and have reasonably good fitness.

It is not trivial to decide which individuals to remove from the population.
Removing too many individuals takes the risk to lose the quality of the popula-
tion. Removing very few individuals may not work. This paper uses simulation
information to decide which individuals will be removed. If an individual leads
to a very long queue of a machine during the simulation, it will be replaced
by randomly generated individuals based on the frequency of features. This is
because the evolved best rules will not assign a machine lots of operations from
our preliminary investigation. In this way, the current population is more likely
to have more promising individuals, and thus more capable of generating better
offspring for the next generations.

Fig. 1 depicts the general outline of the proposed GP with the adaptive
search. GP starts to initialise the population randomly, and then evaluate the
individuals in the population. The individuals in the new generation (i.e. off-
spring) are generated in the evolution stage along with the selection. For the
proposed algorithm, there are three main differences compared with standard
GP. The first one is that the frequency of features are counted based on the en-

6 F. Zhang et al.

tire top ten individuals after evaluating the individuals. The top ten individuals
are better than others obviously, which are good for measuring the frequency of
features from our preliminary work. This information is converted into a prob-
ability for each feature. The second one is that the re-initialisation strategy is
applied to import new potential good individuals into the population by gener-
ating new individuals based on the frequency of features. The last one is that
the frequency of feature information is utilised to guide the mutation direction.
The adaptive strategies are applied over time.

4 Experiment Design

4.1 Simulation Model

Simulation is a common method to investigate complex real-world problems
[22]. This paper assumes there are 5000 jobs that need to be processed by ten
machines. The importance of jobs might be different, which are indicated by
weights. The weights of 20%, 60%, and 20% of jobs are set as one, two and four,
respectively. The number of operations of each job varies by a uniform discrete
distribution between one and ten. The processing time of each operation is set
by uniform discrete distribution with the range [1, 99]. The number of candidate
machines for an operation follows a uniform discrete distribution between one
and ten.

In each problem instance, jobs arrive stochastically according to a Poisson
process with rate λ. To improve the generalisation ability of the evolved rules
for DFJSS problems, the seeds used to generate the jobs are rotated at each
generation. In addition, to make sure the accuracy of the collected data, a warm-
up period of 1000 jobs is used. If any machine in the system has more than 100
operations, the simulation will be stopped, and the current evaluating individual
is replaced by a new individual based on re-initialisation strategy.

4.2 Parameter Settings

In our experiment, the terminal and function set are shown in Table 1, following
the setting in [23]. The “/” operator is protected division, returning one if divided
by zero. The other parameter settings of GP are shown in Table 2.

4.3 Comparison Design

Four algorithms are taken into the comparison in this paper. The cooperative
coevolution genetic programming (CCGP) [6] which can be used to evolve rout-
ing rule and sequencing rule simultaneously, is selected as the baseline algo-
rithm. Our proposed algorithm, which incorporates with adaptive strategy by
mutation, is named as MUGP (i.e. generate subtree based on the frequency of
features for mutation). The algorithm that incorporates re-initialisation strategy
(i.e. reinitialise some useful individuals based on the machine information during

GP with Adaptive Search Based on the Frequency of Features for DFJSS 7

Table 1: The terminal and function sets.

Terminals Description

NIQ The number of operations in the queue
Machine-related WIQ Current work in the queue

MWT Waiting time of a machine

PT Processing time of an operation
Operation-related NPT Median processing time for next operation

OWT The waiting time of an operation

WKR The median amount of work remaining of a job
Job-related NOR The number of operations remaining of a job

W Weight of a job
TIS Time in system

functions +, −, ∗, /, max, min as usual meaning

Table 2: The parameter setting of GP.

Parameter Value

Number of subpopulations 2
Subpopulation size 512

Method for initialising population ramped-half-and-half
Initial minimum/maximum depth 2 / 6

Maximal depth of programs 8
The number of elites 10

Crossover/Mutation/Reproduction rate 80% / 15% / 5%
Parent selection Tournament selection with size 7

Number of generations 51
Terminal/non-terminal selection rate 10% / 90%

the simulation) is named as IMGP. The proposed algorithm, which incorporated
by both mutation and re-initialisation, is named as IM2GP. MUGP, IMGP and
IM2GP are compared with CCGP, respectively.

To verify their effectiveness, the proposed algorithms are tested on six differ-
ent scenarios. The scenarios consist of three objectives (e.g. max flowtime, mean
flowtime, and mean weighted flowtime) and two utilisation levels (e.g. 0.85 and
0.95). For the sake of convenience, Fmax, Fmean, and WFmean are used to in-
dicate max flowtime, mean flowtime, and mean weighted flowtime, respectively.
The objective functions are shown as follows.

– Minimising Fmax = max{C1, Ci, ..., Cn}
– Minimising Fmean =

∑n
i=1 {Ci−ri}

n

– Minimising WFmean =
∑n

i=1 wi∗{Ci−ri}
n

where Ci is the completion time of job Ji, ri is the release time of Ji, and wi is
the weight of Ji.

8 F. Zhang et al.

Table 3: The mean (standard deviation) of the objective value of CCGP, MUGP,
IMGP, and IM2GP over 50 independent runs for six dynamic flexible scenarios.

Scenario CCGP MUGP IMGP IM2GP

<Fmax,0.85> 1212.05(34.68) 1219.73(29.41) 1208.64(30.78) 1219.61(40.52)
<Fmax,0.95> 1941.98(29.93) 1946.65(47.62) 1934.25(25.90) 1942.72(31.19)
<Fmean,0.85> 385.95(3.22) 384.79(1.39) 384.89(2.42)(-) 384.57(1.46)(-)
<Fmean,0.95> 551.18(5.78) 549.66(2.90) 551.20(4.70) 549.51(4.21)(-)

<WFmean,0.85> 831.41(6.08) 829.43(5.31)(-) 831.20(6.71) 829.26(4.14)(-)
<WFmean,0.95> 1111.01(12.02) 1107.59(9.57) 1105.44(6.71)(-) 1105.70(6.95)(-)

Note that the evolved best rule at each generation is tested on 50 different test
instances, and the mean objective value is reported as the objective value of this
best rule. This aims to guarantee the accuracy of measuring the performance.

5 Results and Discussions

Fifty independent runs are conducted for the comparison. Wilcoxon rank-sum
test with a significance level of 0.05 is used to verify the performance of proposed
algorithms. In the following results, “-” and “+” indicate the corresponding
result is significantly better or worse than its counterpart. If there is no mark
there, that means they have similar performance.

5.1 Performance of Evolved Rules

Table 3 shows the mean and standard deviation of the objective value of CCGP,
MUGP, IMGP, and IM2GP over 50 independent runs for six dynamic flexible
scenarios. The performance of MUGP is significantly better than CCGP in one
scenario (e.g. <WFmean,0.85>. It indicates that the proposed adaptive strat-
egy with the mutation has the potential to take advantage of the information
of the frequency of features. However, it does not work in most scenarios. One
possible reason is that the mutation rate is too low (i.e. 0.15) to fully utilise
the information. The performance of IMGP is significantly better than that of
CCGP in only two scenarios (e.g. <Fmean,0.85> and <WFmean,0.95>). One
possible reason is that the reinitialised individuals do not have a big impact on
the population. The performance of IM2GP is significantly better than CCGP
in four scenarios (e.g. <Fmean,0.85>, <Fmean,0.95>, <WFmean,0.85> and
<WFmean,0.95>). It indicates that the proposed adaptive strategy with mu-
tation and re-initialisation strategies are more promising. For minimising the
max-flowtime, in scenario <Fmax,0.85> and <Fmax,0.85>, there is no signifi-
cant difference among the three algorithms.

Fig. 2 shows the convergence curves of the average objective value on the test
instances of CCGP, MUGP, IMGP, and IM2GP over 50 independent runs. Ex-
cept for max-flowtime related scenarios, IM2GP can converge faster and achieve

GP with Adaptive Search Based on the Frequency of Features for DFJSS 9

●

●

●

●

●

●
●●

●

●
●●

●●●

●
●

●
●●

●●●●● ●●●●
● ●●

●●● ●●●●● ●●

●

●

●

●

●

●●

●●●

●●●●●
●

●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●

●

●

●
●

●
●

●●
●

●
●

●●
●

●●
●●

●●●●● ●●●●● ●●

●

●●
●●●●● ●●●●

●

●

●

●
●

●

●

●

●
●

●●
●

●●●
●● ●●●

●
● ●●●●● ●●●●● ●●●●● ●●●●

●

●

●●
●

●

●●
●●

●

●●●
●●

●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

●

●

●
●

●
●

●
●

●●
●

●
●●●●

●●●●●
●●●●● ●●●●● ●●●●● ●●●●●

<Fmax, 0.95> <Fmean, 0.95> <WFmean, 0.95>

<Fmax, 0.85> <Fmean, 0.85> <WFmean, 0.85>

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
830

840

850

860

870

1100

1150

1200

385

390

395

400

550

560

570

580

590

1200

1300

1400

1500

2000

2100

2200

2300

2400

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

 o
n

Te
st

 In
st

an
ce

s

● CCGP MUGP IMGP IM2 GP

Fig. 2: The convergence curves of CCGP, MUGP, IMGP, and IM2GP over 50
independent runs in six scenarios.

better performance than that of CCGP. For minimising max-flowtime, the pro-
posed three algorithms have no obvious advantages. It might be because max-
flowtime is more sensitive to the worst case, which is more complex and hard to
optimise.

5.2 Unique Feature Analyses

The number of unique features in the rules is one of the indicators of the com-
plexity of evolved rules. The number of unique feature means the least number
of elements that is needed to construct the rules. A rule with a smaller number
of features is easier to be interpreted [24].

Fig. 3 and Fig. 4 show the violin plot of the number of unique features of
routing and sequencing rules obtained by CCGP, MUGP, IMGP, and IM2GP
over 30 independent runs in different scenarios. Violin plots are similar to box
plots, except that they also show the probability density of the data at different
values, usually smoothed by a kernel density estimator. From an overall view,
both for the routing rule and sequencing rule, the rules obtained by MUGP
and IM2GP involve a smaller set of features. For the routing rule, there is no
statistical difference between MUGP and IM2GP in most scenarios except the
scenario <Fmean,0.85>. For the sequencing rule, there is no statistical difference
between MUGP and IM2GP in all the scenarios. It indicates that the adaptive
search strategy only with mutation still can have a significant influence on the
unique number of features, although the mutation rate is low. However, both for
routing and sequencing rules, the unique number of features of IMGP is similar
with that of CCGP in all scenarios.

10 F. Zhang et al.

●

● ●

●

<Fmax, 0.95> <Fmean, 0.95> <WFmean, 0.95>

<Fmax, 0.85> <Fmean, 0.85> <WFmean, 0.85>

4

6

8

10

4

6

8

10

4

6

8

10

4

6

8

10

4

6

8

10

4

6

8

10

AlgorithmT
h

e
 N

u
m

b
e

r
o

f
U

n
iq

u
e

 F
e

a
tu

re
s

in
 R

o
u

tin
g

 R
u

le
s

CCGP MUGP IMGP IM2 GP

Fig. 3: Violin plot of the number of unique features of routing rules obtained by
CCGP, MUGP, IMGP, and IM2GP over 30 independent runs in six scenarios.

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●●

●●●● ●● ●●

●

●

●

●

<Fmax, 0.95> <Fmean, 0.95> <WFmean, 0.95>

<Fmax, 0.85> <Fmean, 0.85> <WFmean, 0.85>

4

6

8

4

6

8

10

2

4

6

8

10

2

4

6

8

10

4

6

8

10

4

6

8

10

AlgorithmT
he

 N
um

be
r

of
 U

ni
qu

e
F

ea
tu

re
s

in
 S

eq
ue

nc
in

g
R

ul
es

CCGP MUGP IMGP IM2 GP

Fig. 4: Violin plot of the number of unique features of sequencing rules obtained
by CCGP, MUGP, IMGP, and IM2GP over 30 independent runs in six scenarios.

GP with Adaptive Search Based on the Frequency of Features for DFJSS 11

5.3 The Frequency of Features

Fig. 5 shows the curves of the frequency of features in routing rules during the
evolutionary process of IM2GP. It shows that the MWT (i.e. machine waiting
time) is the most important feature for the routing rules in all scenarios. The
importance of MWT is much higher than other features. In the scenarios whose
utilisation levels are 0.85, WIQ (i.e. the workload in the queue) plays a secondary
role. In the scenarios whose have a higher utilisation level (i.e. 0.95), NIQ (i.e. the
number of operations in the queue) plays a significant role. Intuitively, both WIQ
and NIQ are important indicators for measuring the workload for machines, they
might have the same functions, and one might take over another one. However,
we do not know how they work in different scenarios. It is interesting to see that
the role of NIQ is significantly higher than that of WIQ in the scenarios that
have higher utilisation level. One possible reason is that NIQ is an important
factor in busy scenarios.

0 20 40

0.1

0.2

0.3
<Fmax, 0.85>

0 20 40

0.1

0.2

0.3

<Fmean, 0.85>

0 20 40

0.1

0.2

0.3

<WFmean, 0.85>

0 20 40

0.1

0.2

<Fmax, 0.95>

0 20 40

0.1

0.2

0.3
<Fmean, 0.95>

0 20 40

0.1

0.2

0.3

<WFmean, 0.95>

Generation

Th
e

Fr
eq

ue
nc

y
of

 F
ea

tu
re

s
in

 R
ou

ti
ng

 R
ul

es

NIQ
WIQ

MWT
PT

NPT
OWT

WKR
NOR

W
TIS

Fig. 5: The curves of the frequency of features in routing rules during the evolu-
tionary process of IM2GP.

Fig. 6 shows the curves of the frequency of features in sequencing rules during
the evolutionary process of IM2GP. Different from routing rules, there are three
features (e.g. WKR, TIS, and PT) play a vital role in minimising max-flowtime.
PT and WKR also are two important features in minimising mean-flowtime and

12 F. Zhang et al.

0 20 40

0.1

0.2

<Fmax, 0.85>

0 20 40
0.0

0.2

0.4
<Fmean, 0.85>

0 20 40
0.0

0.1

0.2

0.3

<WFmean, 0.85>

0 20 40

0.1

0.2

<Fmax, 0.95>

0 20 40
0.0

0.2

0.4

<Fmean, 0.95>

0 20 40
0.0

0.1

0.2

0.3

<WFmean, 0.95>

Generation

Th
e

Fr
eq

ue
nc

y
of

 F
ea

tu
re

s
in

 S
eq

ue
nc

in
g

Ru
le

s

NIQ
WIQ

MWT
PT

NPT
OWT

WKR
NOR

W
TIS

Fig. 6: The curves of the frequency of features in sequencing rules during the
evolutionary process of IM2GP.

weighted mean-flowtime. Except for them, W plays a dominant role in weighted
mean-flowtime, which is consistent with our intuition. Besides, W plays its role
mainly in sequencing rules instead of routing rules.

It is interesting to see the trend of the feature frequency without adaptive
strategies. Fig. 7 shows the curves of the frequency of features of the routing
rules that evolved by CCGP. Comparing Fig. 5 and Fig. 7, both IM2GP and
CCGP can detect important features and use them to build individuals, this is
the advantage of GP itself. The difference is that IM2GP can further enhance
this ability. Fig. 7 shows that the frequency of feature MWT is much higher
than that of CCGP (i.e. the most obvious one) during the evolutionary process
(i.e. generation 50). For IM2GP, in the scenarios with utilisation level 0.85,
the frequency of WIQ is higher than other features, which is not that clear for
CCGP. Besides, in the scenarios with utilisation level 0.95, the importance of
NIQ is easier to be distinguished than that of in CCGP.

5.4 Reinitialised Individuals

Fig. 8 shows the curves of the number of reinitialised routing rules. In all the
scenarios, in the beginning, there are a lot of reinitialised individuals in the
population. As the number of generations increases, the number of reinitialised

GP with Adaptive Search Based on the Frequency of Features for DFJSS 13

0 20 40

0.1

0.2

<Fmax, 0.85>

0 20 40

0.1

0.2

<Fmean, 0.85>

0 20 40

0.1

0.2

0.3
<WFmean, 0.85>

0 20 40
0.05

0.10

0.15

0.20

<Fmax, 0.95>

0 20 40

0.1

0.2

<Fmean, 0.95>

0 20 40

0.1

0.2

<WFmean, 0.95>

Generation

Th
e

Fr
eq

ue
nc

y
of

 F
ea

tu
re

s
in

 R
ou

ti
ng

 R
ul

es

NIQ
WIQ

MWT
PT

NPT
OWT

WKR
NOR

W
TIS

Fig. 7: The curves of the frequency of features in routing rules during the evolu-
tionary process of CCGP.

routing rules is getting smaller and smaller. After the fifteenth generation, there
is no significant change in the number of reinitialised routing rules.

Fig. 9 shows the curves of the number of reinitialised sequencing rules. Dif-
ferent from routing rules, the sequencing rules are seldom detected as bad rules.
This is in line with our expectations. When evaluating sequencing rules, the best
routing rule is used as the collaborator, the probability of a machine that is as-
signed lots of operations is small. Only when a sequencing rule is quite bad, it
might be detected as a bad rule. But for the routing rule, even the best sequenc-
ing rule is chosen as the collaborator, there are different routing rules which can
lead to a high probability of a machine that is assigned lots of operations.

5.5 Training time

Table 4 shows the mean and standard deviation of training time of the four
algorithms over 50 independent runs in six scenarios. There is no significant
difference between the four algorithms. It means the proposed adaptive search
strategies do not need extra computational cost. This verifies the advantages of
utilising the information generated during the evolutionary process of GP.

In general, IM2GP can speed up the convergence and achieve effective rules in
most scenarios without extra computational cost, which confirms its effectiveness
and efficiency.

14 F. Zhang et al.

<Fmax, 0.95> <Fmean, 0.95> <WFmean, 0.95>

<Fmax, 0.85> <Fmean, 0.85> <WFmean, 0.85>

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0

20

40

60

0

20

40

60

0

20

40

0

20

40

0

20

40

0

25

50

75

100

Generation

T
he

 A
ve

ra
ge

 N
um

be
r

of
 R

ei
ni

tia
lis

ed
 R

ou
itn

g
R

ul
es

Fig. 8: The curves of the number of reinitialised routing rules of IM2GP over 50
independent runs in six different scenarios.

<Fmax, 0.95> <Fmean, 0.95> <WFmean, 0.95>

<Fmax, 0.85> <Fmean, 0.85> <WFmean, 0.85>

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0.000

0.025

0.050

0.075

0.100

0.0

0.5

1.0

1.5

2.0

0.00

0.05

0.10

0.15

0.0

0.5

1.0

1.5

2.0

0.00

0.02

0.04

0.06

0.08

0

1

2

3

4

Generation

T
he

 A
ve

ra
ge

 N
um

be
r

of
 R

ei
ni

tia
lis

ed
 S

eq
ue

ni
cn

g
R

ul
es

Fig. 9: The curves of the number of reinitialised sequencing rules of IM2GP over
50 independent runs in six different scenarios.

Table 4: The mean (standard deviation) of training time (in minutes) obtained
by over 50 independent runs for six different scenarios.

Scenario CCGP MUGP IMGP IM2GP

<Fmax,0.85> 73(9) 75(12) 75(10) 75(11)
<Fmax,0.95> 87(15) 83(12) 88(11) 91(23)
<Fmean,0.85> 71(10) 71(12) 72(11) 73(12)
<Fmean,0.95> 80(13) 81(12) 80(11) 81(11)

<WFmean,0.85> 73(13) 73(10) 75(12) 78(11)
<WFmean,0.95> 82(13) 80(11) 85(10) 87(11)

GP with Adaptive Search Based on the Frequency of Features for DFJSS 15

6 Conclusions and Future Work

The goal of this paper was to develop adaptive search strategies to guide the
behaviour of GP for both improving its convergence speed and evolving more
effective scheduling heuristics for DFJSS. The goal was achieved by proposing the
adaptive mutation and re-initialisation strategies that can utilise the information
of the frequency of features information during the evolutionary process.

The results show that with adaptive search, the proposed IM2GP can speed
up the convergence and achieve better performance in most scenarios while no
worse in all other scenarios without increasing the computational cost. The
evolved rules by IM2GP have better test performance of a given complex job shop
scenario, especially in minimising mean-flowtime and weighted mean-flowtime.
In terms of the number of unique features, the evolved rules by the proposed
algorithms with adaptive strategies contain fewer features. This can potentially
improve the interpretability of the evolved rules because the relationships be-
tween features tend to be less complicated. Besides, the proposed algorithms
that incorporate the frequency of features information do not need extra com-
putational cost. This shows the benefits of making use of the information during
the evolutionary process.

Some interesting directions can be further investigated in the near future.
This work already shows the effectiveness to take advantage of the information
generated during the evolutionary process. We would like to find more promising
ways to detect useful information further to improve its performance.

References

1. Manne, A.S.: On the job-shop scheduling problem. Operations Research 8(2), 219–
223 (1960)

2. Geiger, C.D., Uzsoy, R., Aytuğ, H.: Rapid modeling and discovery of priority dis-
patching rules: An autonomous learning approach. Journal of Scheduling 9(1), 7–34
(2006)

3. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for
solving multi-objective flexible job-shop problems. Computers & Industrial Engi-
neering 54(3), 453–473 (2008)

4. Nguyen, S.B.S., Zhang, M.: A hybrid discrete particle swarm optimisation method
for grid computation scheduling. In: 2014 IEEE Congress on Evolutionary Com-
putation (CEC). pp. 483–490. IEEE (2014)

5. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Com-
puting 45(4), 369–375 (1990)

6. Yska, D., Mei, Y., Zhang, M.: Genetic programming hyper-heuristic with coopera-
tive coevolution for dynamic flexible job shop scheduling. In: European Conference
on Genetic Programming. pp. 306–321. Springer (2018)

7. Zhang, F., Mei, Y., Zhang, M.: Genetic programming with multi-tree representa-
tion for dynamic flexible job shop scheduling. In: Proceedings of the Australasian
Joint Conference on Artificial Intelligence (AI). pp. 472–484. Springer (2018)

8. Durasevic, M., Jakobovic, D.: A survey of dispatching rules for the dynamic un-
related machines environment. Expert Systems with Applications 113, 555–569
(2018)

16 F. Zhang et al.

9. Koza, J.R., Poli, R.: Genetic programming. In: Search Methodologies, pp. 127–164.
Springer (2005)

10. Miyashita, K.: Job-shop scheduling with genetic programming. In: Proceedings of
the 2nd Annual Conference on Genetic and Evolutionary Computation. pp. 505–
512. Morgan Kaufmann Publishers Inc. (2000)

11. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Genetic programming for evolving
due-date assignment models in job shop environments. Evolutionary Computation
22(1), 105–138 (2014)

12. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of produc-
tion scheduling heuristics: A review. IEEE Transactions on Evolutionary Compu-
tation 20(1), 110–124 (2016)

13. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.:
Exploring hyper-heuristic methodologies with genetic programming. In: Computa-
tional Intelligence, pp. 177–201. Springer (2009)

14. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.R.: A genetic programming
hyper-heuristic approach for evolving 2-d strip packing heuristics. IEEE Trans.
Evolutionary Computation 14(6), 942–958 (2010)

15. Hyde, M.R.: A genetic programming hyper-heuristic approach to automated pack-
ing. Ph.D. thesis, University of Nottingham, UK (2010)

16. Bader-El-Den, M.B., Poli, R., Fatima, S.: Evolving timetabling heuristics using a
grammar-based genetic programming hyper-heuristic framework. Memetic Com-
puting 1(3), 205–219 (2009)

17. Pillay, N., Banzhaf, W.: A genetic programming approach to the generation of
hyper-heuristics for the uncapacitated examination timetabling problem. In: Pro-
ceedings of the Portuguese Conference on Aritficial Intelligence (EPIA). pp. 223–
234 (2007)

18. Zhang, F., Mei, Y., Zhang, M.: A new representation in genetic programming for
evolving dispatching rules for dynamic flexible job shop scheduling. In: Proceed-
ings of the European Conference on Evolutionary Computation in Combinatorial
Optimization (EvoCOP). pp. 33–49. Springer (2019)

19. Zhang, F., Mei, Y., Zhang, M.: A two-stage genetic programming hyper-heuristic
approach with feature selection for dynamic flexible job shop scheduling. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO). pp.
347–355. IEEE (2019)

20. Durasevic, M., Jakobovic, D.: Evolving dispatching rules for optimising many-
objective criteria in the unrelated machines environment. Genetic Programming
and Evolvable Machines 19(1-2), 9–51 (2018)

21. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules
for complex shop floor scenarios: a genetic programming approach. In: Proceedings
of the 12th Annual Conference on Genetic and Evolutionary Computation. pp.
257–264. ACM (2010)

22. Davis, J.P., Eisenhardt, K.M., Bingham, C.B.: Developing theory through simula-
tion methods. Academy of Management Review 32(2), 480–499 (2007)

23. Mei, Y., Zhang, M., Nguyen, S.: Feature selection in evolving job shop dispatch-
ing rules with genetic programming. In: Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference (GECCO). pp. 365–372 (2016)

24. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining
explanations: An overview of interpretability of machine learning. In: 5th IEEE
International Conference on Data Science and Advanced Analytics (DSAA). pp.
80–89 (2018)

	Genetic Programming with Adaptive Search Based on the Frequency of Features for Dynamic Flexible Job Shop Scheduling

