Skip to main content

Differential Evolution Multi-Objective for Tertiary Protein Structure Prediction

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2020)

Abstract

The determination of proteins’ structure is very expensive and time-consuming, making computer-aided methods attractive. However, in computational terms, the protein structure prediction is a NP-Hard problem [17], meaning that there is no efficient algorithm that can find a solution in a viable computational time. Nonetheless, the energy terms that compose different force fields seem to be conflicting among themselves, leading to a multi-objective problem. In this sense, different works in the literature have proposed multi-objective formulations of search mechanisms. Hence, we use the Differential Evolution Multi-Objective (DEMO) algorithm with the Rosetta score3 energy function as a force field. In our work, we split the energy terms into two objectives, one with only the van der Waals values, while the second one contains the remaining bonded and non-bonded, including the secondary structure reinforcement. Moreover, we enhance the DEMO algorithm with structural knowledge provided by the Angle Probability List (APL). From this perspective, our work provides different contributions to the research area, since the DEMO algorithm was never used in this problem, neither the APL with this algorithm. Also, the multi-objective formulation using Rosetta score3 was not yet explored by related works, even though its relevance for the problem. Results obtained show that the DEMO found better structures than the single-objective differential evolution that uses the same mutation mechanism, energy function, and APL. Also, DEMO reached competitive results when comparing with state-of-art bi-objective approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.pyrosetta.org.

  2. 2.

    http://sbcb.inf.ufrgs.br/nias.

References

  1. Alford, R.F., et al.: The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13(6), 3031–3048 (2017)

    Article  Google Scholar 

  2. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181, 223–230 (1973)

    Article  Google Scholar 

  3. Berma, H.M., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  4. Borguesan, B., E Silva, M.B., Grisci, B., Inostroza-Ponta, M., Dorn, M.: APL: an angle probability list to improve knowledge-based metaheuristics for the three-dimensional protein structure prediction. Comput. Biol. Chem. 59, 142–157 (2015)

    Article  Google Scholar 

  5. Borguesan, B., Inostroza-Ponta, M., Dorn, M.: NIAS-server: neighbors influence of amino acids and secondary structures in proteins. J. Comput. Biol. 24, 255–265 (2017)

    Article  Google Scholar 

  6. Brasil, C.R.S., Delbem, A.C.B., Da Silva, F.L.B.: Multiobjective evolutionary algorithm with many tables for purely ab initio protein structure prediction. J. Comput. Chem. 34(20), 1719–1734 (2013)

    Article  Google Scholar 

  7. Brooks, B.R., et al.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)

    Article  Google Scholar 

  8. Calvo, J.C., Ortega, J., Anguita, M.: Comparison of parallel multi-objective approaches to protein structure prediction. J. Supercomput. 58(2), 253–260 (2011)

    Article  Google Scholar 

  9. Calvo, J.C., Ortega, J., Anguita, M.: PITAGORAS-PSP: including domain knowledge in a multi-objective approach for protein structure prediction. Neurocomputing 74(16), 2675–2682 (2011)

    Article  Google Scholar 

  10. Cutello, V., Narzisi, G., Nicosia, G.: A class of Pareto archived evolution strategy algorithms using immune inspired operators for ab-initio protein structure prediction. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 54–63. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32003-6_6

    Chapter  Google Scholar 

  11. Cutello, V., Narzisi, G., Nicosia, G.: Computational studies of peptide and protein structure prediction problems via multiobjective evolutionary algorithms. In: Knowles, J., Corne, D., Deb, K., Chair, D.R. (eds.) Multiobjective Problem Solving from Nature. Natural Computing Series, pp. 93–114. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72964-8_5

    Chapter  Google Scholar 

  12. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution–an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  14. Dorn, M., E Silva, M.B., Buriol, L.S., Lamb, L.C.: Three-dimensional protein structure prediction: methods and computational strategies. Comput. Biol. Chem. 53, 251–276 (2014)

    Article  Google Scholar 

  15. Emmerich, M.T., Deutz, A.H.: A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat. Comput. 17(3), 585–609 (2018)

    Article  MathSciNet  Google Scholar 

  16. Gao, S., Song, S., Cheng, J., Todo, Y., Zhou, M.C.: Incorporation of solvent effect into multi-objective evolutionary algorithm for improved protein structure prediction. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(4), 1365–1378 (2018)

    Article  Google Scholar 

  17. Guyeux, C., Côté, N.M.L., Bahi, J.M., Bienie, W.: Is protein folding problem really a NP-complete one? First investigations. J. Bioinf. Comput. Biol. 12, 1350017 (2014)

    Article  Google Scholar 

  18. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C.: Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct. Funct. Bioinf. 65(3), 712–725 (2006)

    Article  Google Scholar 

  19. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  Google Scholar 

  20. Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. IEEE Congr. Evol. Comput. 1, 443–450 (2005)

    Google Scholar 

  21. Ligabue-Braun, R., Borguesan, B., Verli, H., Krause, M.J., Dorn, M.: Everyone is a protagonist: residue conformational preferences in high-resolution protein structures. J. Comput. Biol. 25, 451–465 (2017)

    Article  Google Scholar 

  22. de Lima Corrêa, L., Dorn, M.: A multi-objective swarm-based algorithm for the prediction of protein structures. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11538, pp. 101–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9_8

    Chapter  Google Scholar 

  23. Narloch, P.H., Dorn, M.: A knowledge based differential evolution algorithm for protein structure prediction. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 343–359. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_23

    Chapter  Google Scholar 

  24. Narloch, P.H., Dorn, M.: A Knowledge based self-adaptive differential evolution algorithm for protein structure prediction. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11538, pp. 87–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9_7

    Chapter  Google Scholar 

  25. Robič, T., Filipič, B.: DEMO: differential evolution for multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_36

    Chapter  MATH  Google Scholar 

  26. Rocha, G.K., dos Santos, K.B., Angelo, J.S., Custódio, F.L., Barbosa, H.J.C., Dardenne, L.E.: Inserting co-evolution information from contact maps into a multiobjective genetic algorithm for protein structure prediction. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2018)

    Google Scholar 

  27. Rohl, C.A., Strauss, C.E., Misura, K.M., Baker, D.: Protein structure prediction using Rosetta, pp. 66–93 (2004)

    Google Scholar 

  28. Scott, W.R., et al.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103(19), 3596–3607 (1999)

    Article  Google Scholar 

  29. Silva, R.S., Stubs Parpinelli, R.: A self-adaptive differential evolution with fragment insertion for the protein structure prediction problem. In: Blesa Aguilera, M.J., Blum, C., Gambini Santos, H., Pinacho-Davidson, P., Godoy del Campo, J. (eds.) HM 2019. LNCS, vol. 11299, pp. 136–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05983-5_10

    Chapter  Google Scholar 

  30. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  31. Venske, S.M., Gonçalves, R.A., Benelli, E.M., Delgado, M.R.: ADEMO/D: an adaptive differential evolution for protein structure prediction problem. Expert Syst. Appl. 56, 209–226 (2016)

    Article  Google Scholar 

  32. Walsh, G.: Proteins: Biochemistry and Biotechnology. Wiley, Hoboken (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from MCT/CNPq [311611/2018-4], CAPES PROBRAL [88881.198766/2018-01] - Brazil, Alexander von Humboldt-Stiftung (AvH) [BRA 1190826 HFST CAPES-P] - Germany, and FAPERGS [19/2551-0001906-8, APE]. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Dorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narloch, P.H., Dorn, M. (2020). Differential Evolution Multi-Objective for Tertiary Protein Structure Prediction. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds) Applications of Evolutionary Computation. EvoApplications 2020. Lecture Notes in Computer Science(), vol 12104. Springer, Cham. https://doi.org/10.1007/978-3-030-43722-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43722-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43721-3

  • Online ISBN: 978-3-030-43722-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics