Skip to main content

Using Evolution to Design Modular Robots: An Empirical Approach to Select Module Designs

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2020)

Abstract

In modular robots, the shape of the building blocks (robotic modules) greatly influences the end result. By changing the physical properties of the module, different robotic structures with better performance for a given task can be found. In this paper, we modify the modules of a modular robot platform, the EMERGE modular robot, in two different ways: changing the length of the module and changing the shape of the starting module (base). We use artificial evolution to optimize robots for a locomotion task using each different module length and base, and also evolve robots with combinations of modules of different length. Results show that, as the length of the module increases, the best robots obtained use fewer modules and fewer connections per module. However, the increase in length results also in a decrease in locomotion performance for large length increases. Interestingly, very few of the best robots found show symmetric structures, which can be attributed to their tendency to roll over as their main means of locomotion. Modular robot designers can use the information about the effectiveness of modules with different lengths, and the use of different starting bases, to reach trade-offs between the desired number of modules in a robot and their effectiveness for a given task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akrour, D., et al.: Joint evolution of morphologies and controllers for realistic modular robots. In: 22nd Symposium on Artificial Life And Robotics (AROB 2017), pp. 57–62, hal-01782566 (2017). https://hal.archives-ouvertes.fr/hal-01782566

  2. Alattas, R.J., Patel, S., Sobh, T.M.: Evolutionary modular robotics: survey and analysis. J. Intell. Robot. Syst.: Theory Appl. 95(3), 1–14 (2018). https://doi.org/10.1007/s10846-018-0902-9

    Article  Google Scholar 

  3. Brunete, A., Ranganath, A., Segovia, S., de Frutos, J.P., Hernando, M., Gambao, E.: Current trends in reconfigurable modular robots design. Int. J. Adv. Rob. Syst. 14(3), 1–21 (2017). https://doi.org/10.1177/1729881417710457

    Article  Google Scholar 

  4. Caamaño, P., Tedín, R., Paz-Lopez, A., Becerra, J.A.: JEAF: a Java evolutionary algorithm framework. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

    Google Scholar 

  5. Chennareddy, S.S.R., Agrawal, A., Karuppiah, A.: Modular self-reconfigurable robotic systems: a survey on hardware architectures. J. Robot. 2017 (2017). https://doi.org/10.1155/2017/5013532

  6. Chocron, O.: Evolving modular robots for rough terrain exploration. In: Nedjah, N., Coelho, L.S., Mourelle, L.M. (eds.) Mobile Robots: The Evolutionary Approach, vol. 50, pp. 23–46. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-49720-2_2

    Chapter  Google Scholar 

  7. Faíña, A., Bellas, F., López-Peña, F., Duro, R.J.: EDHMoR: evolutionary designer of heterogeneous modular robots. Eng. Appl. Artif. Intell. 26(10), 2408–2423 (2013)

    Article  Google Scholar 

  8. Faina, A., Bellas, F., Orjales, F., Souto, D., Duro, R.J.: An evolution friendly modular architecture to produce feasible robots. Robot. Auton. Syst. 63, 195–205 (2015)

    Article  Google Scholar 

  9. Haasdijk, E., Rusu, A.A., Eiben, A.E.: HyperNEAT for locomotion control in modular robots. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 169–180. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15323-5_15

    Chapter  Google Scholar 

  10. Jelisavcic, M., et al.: Real-world evolution of robot morphologies: a proof of concept. Artif. Life 23(2), 206–235 (2017). https://doi.org/10.1162/ARTL_a_00231

    Article  Google Scholar 

  11. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Trans. Mechatron. 10(3), 314–325 (2005)

    Article  Google Scholar 

  12. Liu, C., Liu, J., Moreno, R., Veenstra, F., Faina, A.: The impact of module morphologies on modular robots. In: 2017 18th International Conference on Advanced Robotics (ICAR), pp. 237–243, July 2017. https://doi.org/10.1109/ICAR.2017.8023524

  13. Marbach, D., Ijspeert, A.J.: Online optimization of modular robot locomotion. In: IEEE International Conference Mechatronics and Automation, vol. 1, pp. 248–253. IEEE (2005)

    Google Scholar 

  14. Miras, K., Haasdijk, E., Glette, K., Eiben, A.E.: Search space analysis of evolvable robot morphologies. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 703–718. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_47

    Chapter  Google Scholar 

  15. Moreno, R., et al.: Automated reconfiguration of modular robots using robot manipulators. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 884–891, November 2018. https://doi.org/10.1109/SSCI.2018.8628628

  16. Moreno, R., Liu, C., Faina, A., Hernandez, H., Gomez, J.: The emerge modular robot, an open platform for quick testing of evolved robot morphologies. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 71–72. ACM (2017)

    Google Scholar 

  17. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: IROS 2013, pp. 1321–1326. IEEE, Tokyo, November 2013. https://doi.org/10.1109/IROS.2013.6696520, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6696520

  18. Seo, J., Paik, J., Yim, M.: Modular reconfigurable robotics. Annu. Rev. Control Robot. Auton. Syst. 2(1), 63–88 (2019). https://doi.org/10.1146/annurev-control-053018-023834

    Article  Google Scholar 

  19. Shen, W.M., Salemi, B., Will, P.: Hormone-inspired adaptive communication and distributed control for conro self-reconfigurable robots. IEEE Trans. Robot. Autom. 18(5), 700–712 (2002)

    Article  Google Scholar 

  20. Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4), 353–372 (1994)

    Article  Google Scholar 

  21. Stoy, K., Brandt, D.: Efficient enumeration of modular robot configurations and shapes. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4296–4301. IEEE (2013)

    Google Scholar 

  22. Stoy, K., Brandt, D., Christensen, D.J.: Self-Reconfigurable Robots: An Introduction. MIT Press (2010)

    Google Scholar 

  23. Veenstra, F., Faina, A., Risi, S., Stoy, K.: Evolution and morphogenesis of simulated modular robots: a comparison between a direct and generative encoding. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 870–885. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_56

    Chapter  Google Scholar 

  24. van de Velde, T., Rossi, C., Eiben, A.E.: Body symmetry in morphologically evolving modular robots. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 583–598. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_39

    Chapter  Google Scholar 

  25. Vergara, A., Lau, Y.S., Mendoza-Garcia, R.F., Zagal, J.C.: Soft modular robotic cubes: toward replicating morphogenetic movements of the Embryo. PLoS ONE 12(1), 1–17 (2017). https://doi.org/10.1371/journal.pone.0169179

    Article  Google Scholar 

  26. Yim, M., et al.: Modular self-reconfigurable robot systems (grand challenges of robotics). IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

    Article  MathSciNet  Google Scholar 

  27. Yim, M., Zhang, Y., Duff, D.: Modular robots. IEEE Spectr. 39(2), 30–34 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moreno, R., Faina, A. (2020). Using Evolution to Design Modular Robots: An Empirical Approach to Select Module Designs. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds) Applications of Evolutionary Computation. EvoApplications 2020. Lecture Notes in Computer Science(), vol 12104. Springer, Cham. https://doi.org/10.1007/978-3-030-43722-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43722-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43721-3

  • Online ISBN: 978-3-030-43722-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics